Your browser doesn't support javascript.
loading
miR-205-5p/E2F1 signal axis is involved in the regulation of radiosensitivity of glioma cells through suppressing the classical Wnt/β-catenin signaling pathway / 中华放射肿瘤学杂志
Chinese Journal of Radiation Oncology ; (6): 1188-1194, 2021.
Article in Chinese | WPRIM | ID: wpr-910536
ABSTRACT

Objective:

To explore the mechanism of miR-205-5p/E2F1 signal axis in regulating the glioma U251, U87 radiotherapy resistance.

Methods:

X-ray gradual ascending and intermittent induction method was used to irradiate the glioma U251 cells to establish U251/TR, U87/TR radiation-resistant cell lines. Then, the morphology, migration, invasion and proliferation abilities of cells (U251/TR, U87/TR radiation-resistant cells and U251, U87 radiation-sensitive cells) were analyzed. Luciferase gene detection system and point mutation technique were employed to analyze the mechanism of miR-205-5p and E2F1 gene activity on U251 and U87 radiation-resistant cell lines.

Results:

Compared with the radiation-sensitive U251 cells, the radiation-resistant cells U251/TR, U87/TR showed increased proliferation activity, enhanced migration and invasion abilities and decreased apoptosis under X-ray irradiation. miR-205-5p mimics transfection could down-regulate the expression of E2F1 factor in U251/TR cells, inhibit cell proliferation, invasion and migration and increase the radiosensitivity of U251/TR cells. miR-205-5p mimics transfection combined with with E2F1 down-regulation exerted anti-tumor effect and decreased cell tolerance by suppressing the Wnt/β-catenin signaling pathway activity.

Conclusions:

The glioma radiation-resistant cell line U251/TR, U87/TR can be established by X-ray gradual ascending and intermittent induction method. The miR-205-5p/E2F1 signal axis exerts tumor-suppressing effect through the classical Wnt/β-catenin signaling pathway, which can be used as an therapeutic target to increase the radiosensitivity of glioma.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Radiation Oncology Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Radiation Oncology Year: 2021 Type: Article