Your browser doesn't support javascript.
loading
Numerical Analysis on Adaptability of Valve Leaflets after Single Valve Replacement in Children / 医用生物力学
Journal of Medical Biomechanics ; (6): E869-E876, 2021.
Article in Chinese | WPRIM | ID: wpr-920696
ABSTRACT
Objective To explore the biomechanical mechanism of aortic insufficiency (AI) after single aortic valve replacement (SAVR) in children and propose the corresponding countermeasures. Methods The idealized aortic valve model and postoperative growth model were constructed. By changing the length of leaflet free edge, leaflet height as well as improving the design with a concave structure, the effects of different structure dimensions on movement synchronization and closing performance of the aortic valve after surgery were compared. Results The closure of the replacement leaflet lagged behind the autologous leaflet, which fitted 2 mm below free edge of the replacement leaflet. AI occurred 6 years after operation. Increasing leaflet height could not improve the postoperative effect and would increase the maximum stress of the leaflet. Increasing free edge length by 10% could improve the postoperative outcomes, while increasing free edge length by 15% would cause the leaflet to be too long, hence resulting in a poor fit of the aortic valve. Compared with the traditional structure, the concave structure was more beneficial for closing performance of the aortic valve, and it could effectively reduce the maximum stress by 20% with the best effect. Conclusions The leaflet movement will be out of synchronization after SAVR, the point of convergence will be shifted, and AI will appear 6 years after surgery. It is recommended to use a concave structure with free edge length increased by 10%, while increasing leaflet height is not recommended.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Medical Biomechanics Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Medical Biomechanics Year: 2021 Type: Article