Your browser doesn't support javascript.
loading
Exosomes from PM 2.5-treated Human Bronchial Epithelial Cells Increase Lung Cancer Metastatic Potential / 生物医学与环境科学(英文)
Biomedical and Environmental Sciences ; (12): 473-484, 2022.
Article in English | WPRIM | ID: wpr-939585
ABSTRACT
Objective@#Fine particulate matter (PM 2.5) is an air pollutant that has become of great concern in recent years. Numerous studies have found that PM 2.5 may contribute to lung cancer, but the pathogenesis has not yet been fully elucidated. In this study, we explored the roles of exosomes from bronchial epithelial cells in PM 2.5-promoted lung cancer metastasis.@*Methods@#Exosomes were isolated from cell supernatants. An animal model of lung metastasis (established by tail vein injection of A549-luc) and in vitro studies with lung cancer cell lines were used to investigate the effects of exosomes derived from PM 2.5-treated human bronchial epithelial cells (PHBE-exo).@*Results@#The animal experiments revealed that PHBE-exo-treated mice showed stronger luciferase activity and a larger relative metastatic region in the lungs, thus indicating that PHBE-exo promoted the metastatic potential of lung cancer. Additionally, PHBE-exo promoted the migration, invasion and epithelial-to-mesenchymal transition of lung cancer cells, in a manner mediated by activation of c-Jun N-terminal kinase.@*Conclusion@#These results implied that PM 2.5 may promote the development of lung cancer through exosomes derived from bronchial epithelial cells, thus providing a potential interventional target for lung cancer. These findings broadened our understanding of cancer-promoting mechanisms of environmental pollutants.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Epithelial Cells / Particulate Matter / Exosomes / Epithelial-Mesenchymal Transition / Lung Neoplasms Type of study: Prognostic study Limits: Animals / Humans Language: English Journal: Biomedical and Environmental Sciences Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Epithelial Cells / Particulate Matter / Exosomes / Epithelial-Mesenchymal Transition / Lung Neoplasms Type of study: Prognostic study Limits: Animals / Humans Language: English Journal: Biomedical and Environmental Sciences Year: 2022 Type: Article