Your browser doesn't support javascript.
loading
Mechanism of Tripterygium wilfordii in Treatment of Triple Negative Breast Cancer Based on Network Pharmacology and Experimental Validation / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 131-141, 2022.
Article in Chinese | WPRIM | ID: wpr-940462
ABSTRACT
ObjectiveTo explore the active ingredients, therapeutic targets, and relative signaling pathways of Tripterygium wilfordii in the treatment of triple negative breast cancer (TNBC) based on network pharmacology, and to verify the mechanism through in vitro cell model. MethodThe active ingredients of T. wilfordii were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The targets of TNBC were obtained from DisGeNET and GeneCards. Venny was used to identify the potential therapeutic targets of T. wilfordii against TNBC. Protein-protein interaction (PPI) network was constructed with String database. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out with DAVID to predict the mechanisms of potential targets. The molecular docking between triptolide and key targets were performed with AutoDock Vina. The effect of triptolide (0, 5, 10, 20, 30, 40, 50, 60, 80 nmol·L-1) on the proliferation of MDA-MB-231 cells was determined through methyl thiazolyl tetrazolium (MTT) assay. The effect of triptolide (0, 12.5, 25, 50 nmol·L-1) on the apoptosis of MDA-MB-231 cells was detected with Hoechst 33342 staining. Western blot was performed to detect the effect of triptolide (0, 25, 50 nmol·L-1) on the expression levels of key targets. ResultT. wilfordii had 23 active ingredients related to 55 potential targets of TNBC. GO and KEGG enrichment revealed that the potential targets were associated with 103 biological processes, 15 cellular components, and 35 molecular functions, and were involved in 140 signaling pathways including atherosclerosis and apoptosis. The results of molecular docking demonstrated that triptolide could bind with the targets including threonine kinase 1 (Akt1), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (p53), transcription factor AP-1 (JUN), signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor (TNF), mitogen-activated protein kinase 8 (MAPK8), prostaglandin G/H synthase 2 (PTGS2), and Caspase-3. According to the results of MTT assay, triptolide (20, 30, 40, 50, 60, 80 nmol·L-1) inhibited the proliferation of MDA-MB-231 cells compared with blank control (P<0.05, P<0.01). Hoechst 33342 staining showed that triptolide (12, 25, 50 nmol·L-1) induced the apoptosis of MDA-MB-231 cells compared with black control (P<0.05, P<0.01). Western blot showcased that 50 nmol·L-1 triptolide down-regulated the relative expression levels of p-Akt, TNF-α, and VEGFA, while 25 and 50 nmol·L-1 triptolide up-regulated the relative expression level of p53 in a dose-dependent manner compared with the blank control (P<0.05, P<0.01). ConclusionT. wilfordii has multiple ingredients, targets, and pathways in the treatment of TNBC. It may regulate p53, VEGFA, TNF-α and other key targets to induce cell apoptosis and suppress angiogenesis and inflammatory response, which provides a scientific basis for the further investigation and clinical application of T. wilfordii.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article