Your browser doesn't support javascript.
loading
Effect of Xiaoxuming decoction on OGD/R-induced synaptic plasticity in HT22 cells / 中国病理生理杂志
Article en Zh | WPRIM | ID: wpr-1023856
Biblioteca responsable: WPRO
ABSTRACT
AIM:To explore the protective effect of Xiaoxuming decoction(XXMD)on synaptic plasticity in the context of cerebral ischemia-reperfusion injury following ischemic stroke.METHODS:An oxygen-glucose depriva-tion/reoxygenation(OGD/R)model was employed in vitro using mouse hippocampal neurons(HT22 cells)to simulate ischemia-reperfusion injury.Cell viability was assessed using a CCK-8 assay to determine the optimal XXMD concentra-tion.The HT22 cells were divided into two groups:control and model(OGD/R).Cellular morphological changes were ob-served using an inverted microscope.The levels of IL-1β,IL-6 and TNF-α in the supernatant were quantified by ELISA.Ultrastructural changes were examined by transmission electron microscopy.Immunofluorescence staining was used to de-tect neuron markers NeuN and synaptic proteins NF200 and MAP2.The protein levels of NF200 and MAP2 were analyzed by Western blot.RESULTS:The highest cell survival rate occurred at an XXMD concentration of 100 mg/L(P<0.05).Compared with control group,the cells in model group exhibited round shape and shrinkage,mitochondrial swelling or vacuolization,and a marked decrease in survival rate.There were significant increases in IL-1β,IL-6 and TNF-α levels(P<0.05).Immunofluorescence intensity and protein levels of NeuN,NF200 and MAP2 were notably reduced(P<0.05).Treatment with XXMD improved cell morphology,ultrastructure and survival rate(P<0.05),and decreased in-flammatory factor levels(P<0.05).Compared with model group,the cells in OGD/R+XXMD group showed significantly increased immunofluorescence intensity and protein levels of NeuN,NF200 and MAP2(P<0.05).CONCLUSION:Xiaoxuming decoction may mitigate OGD/R-induced injury,potentially by inhibiting inflammatory responses and enhanc-ing synaptic plasticity.
Palabras clave
Texto completo: 1 Índice: WPRIM Idioma: Zh Revista: Chinese Journal of Pathophysiology Año: 2024 Tipo del documento: Article
Texto completo: 1 Índice: WPRIM Idioma: Zh Revista: Chinese Journal of Pathophysiology Año: 2024 Tipo del documento: Article