Research and development of nanoparticles with active targeting ability in nonneoplastic kidney disease / 中国组织工程研究
Chinese Journal of Tissue Engineering Research
; (53): 3603-3608, 2024.
Article
de Zh
| WPRIM
| ID: wpr-1021739
Bibliothèque responsable:
WPRO
ABSTRACT
BACKGROUND:Currently,there are few kinds of drugs to treat kidney diseases,and many systemic drugs have some problems,such as serious side effects,rapid degradation in the body circulation and so on.At present,active targeting of nanoparticles has become a hot spot in the field of drug delivery,and the exploration of the pathological mechanism related to active targeting of nanoparticles is becoming more and more abundant. OBJECTIVE:To summarize the active targeting strategies in common renal diseases. METHODS:The first author and the second author searched CNKI,Wanfang,VIP,and PubMed databases using"nanoparticles,active targeting,target,kidney,kidney disease"as English key words and"nanoparticles,nanoparticles,targeting,active targeting,kidney disease,kidney"as Chinese key words.All relevant articles published before July 2,2023 were retrieved,screened,concluded,and summarized.Finally,62 articles were included for the summary. RESULTS AND CONCLUSION:The active targeting effect of nanoparticles has been studied in many common kidney diseases.The mechanism of active targeting is mainly the binding of ligands and receptors,by modifying the ligand on the nanoparticles to specifically target the receptor on the cells in the kidney;in which way active targeting is realized.Under different renal pathological conditions,the pathological changes of specific kidney sites may become the key breakthrough point to achieve active targeting.Although kidney-targeting nanoparticles have shown promise in the treatment of nonneoplastic kidney diseases,but it is still in the experimental phase in animals,and it is still a long way from applying these results to medical work.
Texte intégral:
1
Indice:
WPRIM
langue:
Zh
Texte intégral:
Chinese Journal of Tissue Engineering Research
Année:
2024
Type:
Article