Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodefi ciency Mice: Preclinical Study
Tissue Engineering and Regenerative Medicine
; (6): 525-538, 2019.
Article
de En
| WPRIM
| ID: wpr-761920
Bibliothèque responsable:
WPRO
ABSTRACT
BACKGROUND: Mesenchymal stromal cells (MSCs) have potent immunomodulatory and neuroprotective properties, and have been tested in neurodegenerative diseases resulting in meaningful clinical improvements. Regulatory guidelines specify the need to perform preclinical studies prior any clinical trial, including biodistribution assays and tumourigenesis exclusion. We conducted a preclinical study of human bone marrow MSCs (hBM-MSCs) injected by intrathecal route in Non-Obese Diabetic Severe Combined Immunodeficiency mice, to explore cellular biodistribution and toxicity as a privileged administration method for cell therapy in Friedreich's Ataxia. METHODS: For this purpose, 3 × 10⁵ cells were injected by intrathecal route in 12 animals (experimental group) and the same volume of culture media in 6 animals (control group). Blood samples were collected at 24 h (n = 9) or 4 months (n = 9) to assess toxicity, and nine organs were harvested for histology and safety studies. Genomic DNA was isolated from all tissues, and mouse GAPDH and human β2M and β-actin genes were amplified by qPCR to analyze hBM-MSCs biodistribution. RESULTS: There were no deaths nor acute or chronic toxicity. Hematology, biochemistry and body weight were in the range of normal values in all groups. At 24 h hBM-MSCs were detected in 4/6 spinal cords and 1/6 hearts, and at 4 months in 3/6 hearts and 1/6 brains of transplanted mice. No tumours were found. CONCLUSION: This study demonstrated that intrathecal injection of hBM-MSCs is safe, non toxic and do not produce tumors. These results provide further evidence that hBM-MSCs might be used in a clinical trial in patients with FRDA.
Mots clés
Texte intégral:
1
Indice:
WPRIM
Sujet Principal:
Valeurs de référence
/
Moelle spinale
/
Biochimie
/
Poids
/
Moelle osseuse
/
Injections rachidiennes
/
Encéphale
/
ADN
/
Ataxie de Friedreich
/
Immunodéficience combinée grave
Type d'étude:
Clinical_trials
/
Guideline
Limites du sujet:
Animals
/
Humans
langue:
En
Texte intégral:
Tissue Engineering and Regenerative Medicine
Année:
2019
Type:
Article