[Designing and comparison of two types of chitosan nanogels for doxorubicine delivery]
Modares Journal of Medical Sciences, Pathobiology. 2015; 18 (2): 53-67
em Fa
| IMEMR
| ID: emr-185177
Biblioteca responsável:
EMRO
Objective: Drug delivery systems related to different cancer therapies is now expanding. Chitosan [CS] is currently receiving enormous interest for medical and pharmaceutical applications due to its biocompatibility in animal tissues. In this study, two nanogels were prepared from CS. Some of the critical factors such as controlling the release, adsorption and specially targeting drug delivery are considered while preparing the nanogels
Methods: Phosphorylated CS [PCS] and Myristilated CS [MCS] nanogels were prepared by reacting CS with tripolyphosphate [TPP] and Myristate as cross-linking agents respectively and then were loaded with Doxorubicin [DOX]. The nanogels were characterized by different techniques such as scanning electron microscopy, dynamic light scattering and Fourier-transform infrared. The cytotoxicity of free DOX, MCS nanogels and DOX loaded MCS was evaluated by the MTT assay
Results: The result of DOX loading and releasing of the nanogels showed high loading capacity and drug loading efficiency of about 97%. Results indicated slow release of about 16-28% of DOX from PCS within 5 days and 18-40% from MCS within 15 days. DOX and MCS-DOX showed the same toxic effect on the prostate cancer cells [LNCaP]
Conclusion: Both PCS and MCS nanogels were qualified on the basis of size, loading and releasing capacity
Methods: Phosphorylated CS [PCS] and Myristilated CS [MCS] nanogels were prepared by reacting CS with tripolyphosphate [TPP] and Myristate as cross-linking agents respectively and then were loaded with Doxorubicin [DOX]. The nanogels were characterized by different techniques such as scanning electron microscopy, dynamic light scattering and Fourier-transform infrared. The cytotoxicity of free DOX, MCS nanogels and DOX loaded MCS was evaluated by the MTT assay
Results: The result of DOX loading and releasing of the nanogels showed high loading capacity and drug loading efficiency of about 97%. Results indicated slow release of about 16-28% of DOX from PCS within 5 days and 18-40% from MCS within 15 days. DOX and MCS-DOX showed the same toxic effect on the prostate cancer cells [LNCaP]
Conclusion: Both PCS and MCS nanogels were qualified on the basis of size, loading and releasing capacity
Buscar no Google
Índice:
IMEMR
Idioma:
Fa
Revista:
Modares J. Med. Sci., Pathobiol.
Ano de publicação:
2015