Your browser doesn't support javascript.
loading
Personalized diagnosis by cached solutions with hypertension as a study model
Carvalho, P. C; Freitas, S. S; Lima, A. B; Barros, M; Bittencourt, I; Degrave, W; Cordovil, I; Fonseca, R; Carvalho, M. G; Moura Neto, R. S; Cabello, P. H.
Affiliation
  • Carvalho, P. C; Universidade Federal do Rio de Janeiro. Rio de Janeiro. BR
  • Freitas, S. S; Instituto Oswaldo Cruz. Departamento de Genética Humana. Rio de Janeiro. BR
  • Lima, A. B; Instituto Nacional de Cardiologia. Laranjeiras. BR
  • Barros, M; Instituto Nacional de Cardiologia. Laranjeiras. BR
  • Bittencourt, I; Instituto Nacional de Cardiologia. Laranjeiras. BR
  • Degrave, W; Fiocruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro. BR
  • Cordovil, I; Instituto Nacional de Cardiologia. Laranjeiras. BR
  • Fonseca, R; Universidade Federal de Juiz de For a. Departamento de Ciência da Computação. Juiz de For a. BR
  • Carvalho, M. G; UFRJ. Instituto de Biofísica Carlos Chagas Filho. Laboratório do Controle da Expressão Gênica. Rio de Janeiro. BR
  • Moura Neto, R. S; Universidade Federal do Rio de Janeiro. Departamento de Genética Humana. Rio de Janeiro. BR
  • Cabello, P. H; Instituto Oswaldo Cruz. Departamento de Genética Humana. Rio de Janeiro. BR
Genet. mol. res. (Online) ; Genet. mol. res. (Online);5(4): 856-867, 2006. tab, ilus, graf
Article в En | LILACS | ID: lil-482072
Ответственная библиотека: BR1.1
ABSTRACT
Statistical modeling of links between genetic profiles with environmental and clinical data to aid in medical diagnosis is a challenge. Here, we present a computational approach for rapidly selecting important clinical data to assist in medical decisions based on personalized genetic profiles. What could take hours or days of computing is available on-the-fly, making this strategy feasible to implement as a routine without demanding great computing power. The key to rapidly obtaining an optimal/nearly optimal mathematical function that can evaluate the [quot ]disease stage[quot ] by combining information of genetic profiles with personal clinical data is done by querying a precomputed solution database. The database is previously generated by a new hybrid feature selection method that makes use of support vector machines, recursive feature elimination and random sub-space search. Here, to evaluate the method, data from polymorphisms in the renin-angiotensin-aldosterone system genes together with clinical data were obtained from patients with hypertension and control subjects. The disease [quot ]risk[quot ] was determined by classifying the patients' data with a support vector machine model based on the optimized feature; then measuring the Euclidean distance to the hyperplane decision function. Our results showed the association of renin-angiotensin-aldosterone system gene haplotypes with hypertension. The association of polymorphism patterns with different ethnic groups was also tracked by the feature selection process. A demonstration of this method is also available online on the project's web site.
Тема - темы
Key words
Полный текст: 1 База данных: LILACS Основная тема: Polymorphism, Genetic / Renin-Angiotensin System / Pattern Recognition, Automated / Diagnosis, Computer-Assisted / Genetic Predisposition to Disease / Hypertension Тип исследования: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Пределы темы: Female / Humans / Male Язык: En Журнал: Genet. mol. res. (Online) Тематика журнала: BIOLOGIA MOLECULAR / GENETICA Год: 2006 Тип: Article
Полный текст: 1 База данных: LILACS Основная тема: Polymorphism, Genetic / Renin-Angiotensin System / Pattern Recognition, Automated / Diagnosis, Computer-Assisted / Genetic Predisposition to Disease / Hypertension Тип исследования: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Пределы темы: Female / Humans / Male Язык: En Журнал: Genet. mol. res. (Online) Тематика журнала: BIOLOGIA MOLECULAR / GENETICA Год: 2006 Тип: Article