Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure / 国际口腔科学杂志·英文版
International Journal of Oral Science
; (4): 6-6, 2023.
Article
в En
| WPRIM
| ID: wpr-971593
Ответственная библиотека:
WPRO
ABSTRACT
The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the "m6A site methylation stoichiometry" of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3'-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.
Полный текст:
1
База данных:
WPRIM
Основная тема:
Bone Marrow
/
RNA
/
Dental Implants
/
RNA Processing, Post-Transcriptional
/
Bone Morphogenetic Proteins
/
Diabetes Mellitus, Type 2
/
Growth Differentiation Factors
/
Mesenchymal Stem Cells
Пределы темы:
Humans
Язык:
En
Журнал:
International Journal of Oral Science
Год:
2023
Тип:
Article