ABSTRACT
During the COVID pandemic, at least 97 US cities closed downtown streets to vehicles to create commercial pedestrian streets with the goal of encouraging active travel and economic activity at safe social distances. This study addressed three questions about these programs for businesses located on a pedestrian street: 1) what factors influenced their feelings about the program;2) what concerns did businesses located on pedestrian streets have;and 3) how did the pedestrian street program impact a business's revenue as compared to other businesses in the area on streets that did not close. We created a geographic database of these pedestrian streets and identified nearly 14,000 abutting businesses, from which we collected interview and survey data. The interviews and survey results highlight key issues surrounding businesses' experiences with pedestrian streets. Businesses abutting pedestrian streets had a slightly higher opinion of these programs than businesses not abutting these streets. A test of the effect of pedestrian street interventions on business revenue using a pseudo-control group showed the effect to be uncertain but, on average, negligible. The findings point to steps that cities can take to maximize the benefits of pedestrian streets for local businesses.
ABSTRACT
Background: SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations;however no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Thus far, we assessed whether oral administration of live SARS-CoV-2 in non-human primates might offer prophylactic benefits. Methods: In this study, we assessed the immunogenicity of gastrointestinal (GI) delivery of SARS-CoV-2 and the protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge in rhesus macaques. Esophagogastroduodenoscopy (EGD) administration of 106 50% Tissue Culture Infectious Dose (TCID50) of SARS-CoV-2 elicited low levels of serum neutralizing antibodies (NAb), which correlated with modestly diminished viral loads in nasal swabs (NS) and Bronchoalveolar Lavage (BAL) post-challenge. In addition, mucosal NAb titers from the rectal swabs (RS), NS, and BAL and Spike-specific T-cell responses appear to be below the limit of detection post-vaccination. Replicating virus was only observed in 44% of macaques and on limited number of dates post vaccination, suggesting limited, if any, productive infection in the GI tract. Results: We demonstrate that GI delivery of live 1x106 TCID50 SARS-CoV-2 elicited modest immune responses and provided partial protection against intranasal and intratracheal challenge with SARS-CoV-2. Moreover, serum neutralizing antibody titers correlated with protective efficacy. Conclusion: These data provide proof-of-concept that an orally administered vaccine can protect against respiratory SARS-CoV-2 challenge, but the limited immunogenicity and protective efficacy observed here suggests that the oral vaccine approach will require optimization.
ABSTRACT
Background: Ad26.COV2.S is a single-shot vaccine that has demonstrated clinical efficacy against symptomatic COVID-19. In this study, we report the durability of immune responses in 20 rhesus macaques received single-shot Ad26.COV2.S and the immunogenicity of a booster shot at 8-10 months following the initial immunization. Methods: Animals were immunized by intramuscular route with 1011 vp (N=10) or 5x1010 vp (N=10) Ad26.COV2.S and were followed for either 230 or 315 days. Animals were then boosted with 5x1010 vp Ad26.COV2.S (N=10). Humoral immune responses including RBD-specific Ig ELISA and pseudovirus-based virus neutralization response were monitored. Circulating RBD-specific memory B cells and bone marrow plasma cells were assessed by multiparameter flow cytometry. Results: Ad26.COV2.S elicited robust and comparable RBD-specific binding and neutralizing antibody responses in animals that received the 1011 vp and 5x1010 vp doses, which peaked on days 28-56, and then showed a biphasic decay. All animals showed binding antibody responses for the duration of follow-up, and 17 of 20 animals showed neutralizing antibody responses by day 230-315. RBD-specific memory B cell response peaked on day 14-28 followed by a gradual decline, and remained detectable in 17 of 20 animals by day 230-315. On day 315 following vaccination, bone marrow RBD-specific PCs were detected in the majority of vaccinated macaques, including in all animals that received the 1011 vp dose. Following Ad26.COV2.S boost immunization, RBD-specific binding antibody responses increased 31-69 fold compared with pre-boost levels against the ancestral (WA1/2020), alpha (B.1.1.7), beta (B.1.351), kappa (B.1.617.1), and delta (B.1.617.2) SARS-CoV-2 variants. Neutralizing antibody responses increased 23-43 fold compared with pre-boost levels against the ancestral, alpha, beta, gamma (P.1), kappa, and delta SARS-CoV-2 variants. Antigen-specific memory B cell response also increased 8 fold following the boost immunization. Conclusion: Ad26.COV2.S elicited durable antibody and B cell responses, and a late boost with Ad26.COV2.S resulted in a dramatic increase in humoral immunity that were highly cross-reactive across multiple SARS-CoV-2 variants in rhesus macaques. These data contribute to our understanding of Ad26.COV2.S durability and boostability, and provide important data to inform COVID-19 vaccine boosting strategies in humans.
ABSTRACT
In Germany, studies have shown that official coronavirus disease 2019 (COVID-19) vaccination coverage estimated using data collected directly from vaccination centers, hospitals, and physicians is lower than that calculated using surveys of the general population. Public debate has since centered on whether the official statistics are failing to capture the actual vaccination coverage. The authors argue that the topic of one’s COVID-19 vaccination status is sensitive in times of a pandemic and that estimates based on surveys are biased by social desirability. The authors investigate this conjecture using an experimental method called the item count technique, which provides respondents with the opportunity to answer in an anonymous setting. Estimates obtained using the item count technique are compared with those obtained using the conventional method of asking directly. Results show that social desirability bias leads some unvaccinated individuals to claim they are vaccinated. Conventional survey studies thus likely overestimate vaccination coverage because of misreporting by survey respondents. © The Author(s) 2022.
ABSTRACT
Aerosols are a critical component of the climate system and a risk to human health. Here, the lockdown response to the coronavirus outbreak is used to analyse effects of dramatic reduction in anthropogenic aerosol sources on satellite-retrieved aerosol optical depth (AOD). A machine learning model is applied to estimate daily AOD during the initial lockdown in China in early 2020. The model uses information on aerosol climatology, geography and meteorological conditions, and explains 69% of the day-to-day AOD variability. A comparison of model-expected and observed AOD shows that no clear, systematic decrease in AOD is apparent during the lockdown in China. During March 2020, regional AOD is observed to be significantly lower than expected by the machine learning model in some coastal regions of the North China Plains and extending to the Korean peninsula. While this may possibly indicate a small lockdown effect on regional AOD, and potentially pointing trans-boundary effects of the lockdown measures, due to uncertainties associated with the method and the limited sample sizes, this AOD decrease cannot be unequivocally attributed to reduced anthropogenic emissions. Climatologically expected AOD is compared to a weather-adjusted expectation of AOD, indicating that meteorological influences have acted to significantly increase AOD during this time, in agreement with recent literature. The findings highlight the complexity of aerosol variability and the challenges of observation-based attribution of columnar aerosol changes.
ABSTRACT
OBJECTIVE: To investigate the peripheral nerve and muscle function electrophysiologically in patients with persistent neuromuscular symptoms following Coronavirus disease 2019 (COVID-19). METHODS: Twenty consecutive patients from a Long-term COVID-19 Clinic referred to electrophysiological examination with the suspicion of mono- or polyneuropathy were included. Examinations were performed from 77 to 255 (median: 216) days after acute COVID-19. None of the patients had received treatment at the intensive care unit. Of these, 10 patients were not even hospitalized. Conventional nerve conduction studies (NCS) and quantitative electromyography (qEMG) findings from three muscles were compared with 20 age- and sex-matched healthy controls. RESULTS: qEMG showed myopathic changes in one or more muscles in 11 patients (55%). Motor unit potential duration was shorter in patients compared to healthy controls in biceps brachii (10.02 ± 0.28 vs 11.75 ± 0.21), vastus medialis (10.86 ± 0.37 vs 12.52 ± 0.19) and anterior tibial (11.76 ± 0.31 vs 13.26 ± 0.21) muscles. All patients with myopathic qEMG reported about physical fatigue and 8 patients about myalgia while 3 patients without myopathic changes complained about physical fatigue. CONCLUSIONS: Long-term COVID-19 does not cause large fibre neuropathy, but myopathic changes are seen. SIGNIFICANCE: Myopathy may be an important cause of physical fatigue in long-term COVID-19 even in non-hospitalized patients.
Subject(s)
COVID-19/complications , COVID-19/physiopathology , Fatigue/etiology , Fatigue/physiopathology , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Adult , Aged , COVID-19/diagnosis , Electromyography/trends , Fatigue/diagnosis , Female , Humans , Male , Middle Aged , Muscular Diseases/diagnosis , Neural Conduction/physiology , Registries , Time FactorsABSTRACT
In the era of the coronavirus disease pandemic, a new disease entity named multisystem inflammatory syndrome in children has emerged. This is a case report of a seven-year-old boy with hyperinflammation and cardiac involvement, compatible with this disease entity. Antibody tests and symptoms indicated previous severe acute respiratory syndrome coronavirus 2 infection. The patient was treated according to international guidelines with full symptom resolution. Awareness of this inflammatory syndrome should prompt immediate treatment and could possibly avoid fatal outcomes.