Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Preprint in English | medRxiv | ID: ppmedrxiv-20192971


Masks have been widely recommended as a precaution against COVID-19 transmission. Several studies have shown the efficacy of masks at reducing droplet dispersion in lab settings. However, during the early phases of the pandemic, the usage of masks varied widely across countries. Using individual response data from the Imperial College London -- YouGov personal measures survey, this study investigates the effect of mask use within a country on the spread of COVID-19. The survey shows that mask-wearing exhibits substantial variations across countries and over time during the pandemics early phase. We use a reduced form econometric model to relate population-wide variation in mask-wearing to the growth rate of confirmed COVID-19 cases. The results indicate that mask-wearing plays an important role in mitigating the spread of COVID-19. Widespread mask-wearing within a country associates with an expected 7% (95% CI: 3.94% -- 9.99%) decline in the growth rate of daily active cases of COVID-19 in the country. This daily decline equates to an expected 88.5% drop in daily active cases over a 30-day period when compared to zero percent mask-wearing, all else held equal. The decline in daily growth rate due to the combined effect of mask-wearing, reduced outdoor mobility, and non-pharmaceutical interventions averages 28.1% (95% CI: 24.2%-32%).

Preprint in English | medRxiv | ID: ppmedrxiv-20115980


To contain the COVID-19 pandemic, several governments introduced strict Non-Pharmaceutical Interventions (NPI) that restricted movement, public gatherings, national and international travel, and shut down large parts of the economy. Yet, the impact of the enforcement and subsequent loosening of these policies on the spread of COVID-19 is not well understood. Accordingly, we measure the impact of NPI on mitigating disease spread by exploiting the spatio-temporal variations in policy measures across the 16 states of Germany. This quasi-experiment identifies each policys effect on reducing disease spread. We adapt the SEIR (Susceptible-Exposed-Infected-Recovered) model for disease propagation to include data on daily confirmed cases, intra- and inter-state movement, and social distancing. By combining the model with measures of policy contributions on mobility reduction, we forecast scenarios for relaxing various types of NPIs. Our model finds that, in Germany, policies that mandated contact restrictions (e.g., movement in public space limited to two persons or people co-living), initial business closures (e.g., restaurant closures), stay-at-home orders (e.g., prohibition of non-essential trips), non-essential services (e.g., florists, museums) and retail outlet closures led to the sharpest drops in movement within and across states. Contact restrictions were the most effective at lowering infection rates, while border closures had only minimal effects at mitigating the spread of the disease, even though cross-border travel might have played a role in seeding the disease in the population. We believe that a deeper understanding of the policy effects on mitigating the spread of COVID-19 allows a more accurate forecast of the disease spread when NPIs are (partially) loosened, and thus also better informs policymakers towards making appropriate decisions.