Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Sci Transl Med ; : eabo0718, 2022.
Article in English | PubMed | ID: covidwho-1816673

ABSTRACT

The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration (EC(50)) from 2.7-to 10.4-fold. Sequence analysis identified non-synonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser(759)-Asp-Asp active motif. In one lineage, the V792I substitution emerged first, then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus (MHV) demonstrated transferability across betacoronaviruses;introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine-triphosphate (UTP) concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.

2.
Proc Natl Acad Sci U S A ; 119(18):e2118126119, 2022.
Article in English | PubMed | ID: covidwho-1815697

ABSTRACT

SignificanceA potential outbreak of swine acute diarrhea syndrome coronavirus (SADS-CoV) in the human population could be devastating. Using genomewide CRISPR knockout screening, we identified the placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection, uncovering a novel antiviral target for CoV infection. The PLAC8-related pathway may also have implications for other CoV infections. Given the ability of SADS-CoV to infect human primary cultures without adaptation, our findings lay the foundation for pandemic preparedness for the potential emergence of SADS-CoVs in response to the One Health Initiative.

3.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333816

ABSTRACT

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. IMPORTANCE: We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibits a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative Ad vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to i) evaluate the protective efficacy of RhAd52 vaccines and ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.

4.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333769

ABSTRACT

Early life SARS-CoV-2 vaccination has the potential to provide lifelong protection and achieve herd immunity. To evaluate SARS-CoV-2 infant vaccination, we immunized two groups of 8 infant rhesus macaques (RMs) at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein, either encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or mixed with 3M-052-SE, a TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. High magnitude S-binding IgG and neutralizing infectious dose 50 (ID 50 ) >10 3 were elicited by both vaccines. S-specific T cell responses were dominated by IL-17, IFN- gamma , or TNF- alpha . Antibody and cellular responses were stable through week 22. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines are promising pediatric SARS-CoV-2 vaccine candidates to achieve durable protective immunity. ONE-SENTENCE SUMMARY: SARS-CoV-2 vaccines are well-tolerated and highly immunogenic in infant rhesus macaques.

5.
PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-333566

ABSTRACT

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease. SUMMARY: We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.

6.
PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-331914

ABSTRACT

A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.

8.
Non-conventional in English | National Technical Information Service, Grey literature | ID: grc-753724

ABSTRACT

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.

9.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-329443

ABSTRACT

The nose is the portal for SARS-CoV-2 infection, suggesting the nose as a target for topical antiviral therapies. Because detergents are virucidal, Johnson and Johnson's Baby Shampoo (J&J) was tested as a topical virucidal agent in SARS-CoV-2 infected subjects. Twice daily irrigation of J&J in hypertonic saline, hypertonic saline alone, or no intervention were compared (n = 24/group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. This study emphasizes the need to assess the pharmacokinetic characteristics of virucidal agents on airway surfaces to guide clinical trials.

10.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-328527

ABSTRACT

Monoclonal antibodies (mAbs) with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefit in cases of mild to moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1-4. Treatment generally requires the administration of high doses of these mAbs with limited efficacy in preventing disease complications or mortality among hospitalized COVID-19 patients5. Here we report the development and evaluation of Fc-optimized anti-SARS-CoV-2 mAbs with superior potency to prevent or treat COVID-19 disease. In several animal models of COVID-19 disease6,7, we demonstrate that selective engagement of activating FcgammaRs results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection upon SARS-CoV-2 challenge and treatment of pre-infected animals. Our results highlight the importance of FcgammaR pathways in driving antibody-mediated antiviral immunity, while excluding any pathogenic or disease-enhancing effects of FcgammaR engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered mAbs with optimal Fc effector function and improved clinical efficacy against COVID-19 disease.

11.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326687

ABSTRACT

The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.

12.
PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-296990

ABSTRACT

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454;p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) ( r = 0.63-0.89), but moderately correlated with nucleoprotein IgG ( r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearman's rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.

13.
PUBMED; 2021.
Preprint in English | PUBMED | ID: ppcovidwho-293057

ABSTRACT

Background: To reduce the coronavirus disease burden in England, along with many other countries, the Government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. Methods: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020-2021. Results: We report that susceptibility to norovirus infection has likely increased between March 2020 to mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. Conclusions: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced.

14.
Mbio ; 12(2):9, 2021.
Article in English | Web of Science | ID: covidwho-1434904

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) receptor is a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host range determinant, and understanding SARS-CoV-2-ACE2 interactions will provide important insights into COVID-19 pathogenesis and animal model development. SARS-CoV-2 cannot infect mice due to incompatibility between its receptor binding domain and the murine ACE2 receptor. Through molecular modeling and empirical in vitro validation, we identified 5 key amino acid differences between murine and human ACE2 that mediate SARS-CoV-2 infection, generating a chimeric humanized murine ACE2. Additionally, we examined the ability of the humanized murine ACE2 receptor to permit infection by an additional preemergent group 2B coronavirus, WIV-1, providing evidence for the potential pan-virus capabilities of this chimeric receptor. Finally, we predicted the ability of these determinants to inform host range identification of preemergent coronaviruses by evaluating hot spot contacts between SARS-CoV-2 and additional potential host receptors. Our results identify residue determinants that mediate coronavirus receptor usage and host range for application in SARSCoV-2 and emerging coronavirus animal model development. IMPORTANCE SARS-CoV-2 (the causative agent of COVID-19) is a major public health threat and one of two related coronaviruses that have caused epidemics in modern history. A method of screening potential infectible hosts for preemergent and future emergent coronaviruses would aid in mounting rapid response and intervention strategies during future emergence events. Here, we evaluated determinants of SARS-CoV-2 receptor interactions, identifying key changes that enable or prevent infection. The analysis detailed in this study will aid in the development of model systems to screen emergent coronaviruses as well as treatments to counteract infections.

15.
American Journal of Respiratory and Critical Care Medicine ; 203(9):1, 2021.
Article in English | Web of Science | ID: covidwho-1407332
16.
American Journal of Respiratory and Critical Care Medicine ; 203(9), 2021.
Article in English | EMBASE | ID: covidwho-1277575

ABSTRACT

RATIONALE While SARS-CoV-2 viral infection, acute lung injury, and inflammation resolve in a timely manner in most individuals, there is growing clinical evidence of long-term sequelae of COVID-19 in some patients, particularly in vulnerable populations. We established a mouse model of SARS-CoV-2 infection using a mouseadapted virus and a standard laboratory strain of mice that displays age-dependent disease severity. In comparison to young BALB/c mice, old BALB/c mice display increased morbidity and mortality when infected with SARS-CoV-2 MA-10, and most succumb to acute infection or reach the criteria for humane euthanasia within 7 days of infection. We examined the lung pathology of older BALB/c mice that survive acute infection to determine the potential long-term pulmonary manifestations of COVID-19 in vulnerable populations such as the elderly.METHODS Mice were randomized and assigned to specific harvest days spanning 30 days prior to the start of the experiment. BALB/cAnNHsd mice were intranasally infected with SARS-CoV-2 MA-10 and clinical signs of disease were monitored, including weight loss and lung function via whole body plethysmography. At each time point, animals were sacrificed and lung lobes were collected for viral titer and histopathological analyses. Lung viral titers of the caudal right lobe were determined by plaque assay. Histopathology of the left lobe was assessed utilizing formalin-fixed, paraffin-embedded specimens.RESULTSIn comparison to 10-week-old BALB/c mice, 1-year-old BALB/c mice were highly susceptible to SARS-CoV-2 MA-10, displaying high morbidity and mortality, even requiring a lower viral dose than young BALB/c mice to yield similar kinetics of weight loss and clinical signs. In some experiments, survival of older mice was low as ∼15% at day 7. For older mice surviving to days 15 and 30 post infection, acute lung injury resolved but there were regionally extensive consolidated areas containing proliferative smooth muscle actin-positive fibroblasts, collagen accumulation, and admixed immune cells with formation of tertiary lymphoid organs. Mice displaying this pulmonary fibroproliferative response did not have detectable levels of virus in the lung.CONCLUSIONSThis mouse adapted SARS-CoV-2 model reveals a response in older mice surviving acute lung injury with robust chronic inflammation and tissue remodeling resulting in pulmonary fibrosis despite viral clearance of the tissue. This offers a model to investigate mediators driving the fibroproliferative and inflammatory responses that may be a COVID-19 sequela and cause persistent pulmonary dysfunction in some vulnerable patients such as the elderly.

17.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-8848

ABSTRACT

The nose is the portal for SARS-CoV-2 infection, suggesting the nose as a target for topical antiviral therapies. Because detergents are virucidal, Johnson and Johnson's Baby Shampoo (J&J) was tested as a topical virucidal agent in SARS-CoV-2 infected subjects. Twice daily irrigation of J&J in hypertonic saline, hypertonic saline alone, or no intervention were compared (n = 24/group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. This study emphasizes the need to assess the pharmacokinetic characteristics of virucidal agents on airway surfaces to guide clinical trials.

18.
Epidemiol Infect ; 148: e267, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-912841

ABSTRACT

Previous research on respiratory infection transmission among university students has primarily focused on influenza. In this study, we explore potential transmission events for multiple respiratory pathogens in a social contact network of university students. University students residing in on-campus housing (n = 590) were followed for the development of influenza-like illness for 10-weeks during the 2012-13 influenza season. A contact network was built using weekly self-reported contacts, class schedules, and housing information. We considered a transmission event to have occurred if students were positive for the same pathogen and had a network connection within a 14-day period. Transmitters were individuals who had onset date prior to their infected social contact. Throat and nasal samples were analysed for multiple viruses by RT-PCR. Five viruses were involved in 18 transmission events (influenza A, parainfluenza virus 3, rhinovirus, coronavirus NL63, respiratory syncytial virus). Transmitters had higher numbers of co-infections (67%). Identified transmission events had contacts reported in small classes (33%), dormitory common areas (22%) and dormitory rooms (17%). These results suggest that targeting person-to-person interactions, through measures such as isolation and quarantine, could reduce transmission of respiratory infections on campus.


Subject(s)
Respiratory Tract Infections/virology , Social Networking , Students , Virus Diseases/transmission , Coinfection/virology , Female , Housing , Humans , Male , Michigan , Respiratory Tract Infections/transmission , Universities
19.
Journal of Immunology ; 204(1), 2020.
Article in English | EMBASE | ID: covidwho-881910

ABSTRACT

Immune homeostasis is the state where the immune system maintains stability in the absence of insult. Much of the analysis of immune homeostasis has focused on systemic immunity, but it is also likely to be important in an organ specific manner. There is evidence that homeostatic immunity can affect subsequent responses to infection or vaccination. Since the lungs are a major site of infection, we used the Collaborative Cross (CC) mouse genetic reference population to study the genetic regulation of the breadth of baseline immune cell populations in the lung and identify loci regulating these cells at the steady state. We found that all immune cell populations measured showed strong genetic (i.e. strain-specific) variation in cell type abundances. We identified 12 quantitative trait loci (QTL) associated with variation in 12 immune cell populations or the relationships between cell populations. Given the role of various immune cells in the lungs during respiratory virus pathogenesis, we asked whether any of the mapped QTL correlated with influenza A virus (IAV) or Severe acute respiratory syndrome associated coronavirus (SARS-CoV) disease following infection in the same strains of mice. Notably, a locus we mapped for baseline abundance of CD8+ T cells in the lungs was associated with peak weight loss following IAV infection. Additionally, a locus mapped for variation in Ly6C+ monocyte/macrophage abundance was associated with SARS-CoV titer at days 2 and 4 post-infection. These data suggest that abundance of lung leukocyte populations prior to infection could serve as predictors of immune responses to respiratory viruses.

SELECTION OF CITATIONS
SEARCH DETAIL