Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Med Res Arch ; 10(7)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-2145760

ABSTRACT

Immunocompromised cancer patients are at significant risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A method to identify those patients at highest risk is needed so that prophylactic measures may be employed. Serum antibodies to SARS-CoV-2 spike protein are important markers of protection against COVID-19 disease. We evaluated total and neutralizing antibody levels pre and post third booster vaccine and compared responses among different cancer-bearing and healthy veterans. This as a prospective, single site, comparative cohort observational trial. The setting was the West Palm Beach VA Medical Center cancer center. All veterans received a third SARS-CoV-2 mRNA booster. The main outcomes were anti-SARS-CoV-2 spike IgG and neutralizing antibodies to wild-type, and B.1.617, BA1, BA2, and BA4/5 variants were measured. Disease type and therapy, COVID-19 infection, and anti-CD20 antibody treatments were documented. The third mRNA vaccine booster increased the mean blood anti-spike IgG five-fold. The second anti-spike level was equal or greater than the first in 129/140 veterans. All the groups except the myeloma group, had post-booster antibody levels significantly higher than pre-booster with 4-fold, 12-fold, 4-fold, 6-fold and 3.5-fold increases for the control, solid tumor, CLL, B cell lymphoma and all B cell malignancy cohorts. The myeloma set showed only a non-significant 1.7-fold increase. Recently anti-CD20 antibody-treated patients were shown to have approximately 200-fold less anti-S IgG production after vaccine booster than other patients. There was a 2.5-fold enhancement of wild-type virus mean neutralizing antibodies after a third mRNA booster and mean neutralization of Delta and Omicron variants increased 2.2, 6.5, 7.7, and 6.2-fold versus pre-boost levels. B cell malignancies failed to show increased post-booster neutralization. The third SARS CoV-2 booster increased total anti-spike IgG and neutralizing antibodies for most subjects. Veterans with B cell malignancies particularly myeloma and those receiving anti-CD20 monoclonal antibodies had the weakest humoral responses. Neutralizing antibody responses to Omicron variants were less than for wild-type virus. A subset of patients without humoral immunity post-booster should be considered for prophylactic antibody or close monitoring.

2.
iScience ; 25(9): 104914, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2069197

ABSTRACT

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

3.
Nat Chem Biol ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2050422

ABSTRACT

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.

4.
Immunol Rev ; 310(1): 4-5, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2038010
5.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2000465

ABSTRACT

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antigens , Epitopes , Immunity, Humoral , Mice
6.
Sci Transl Med ; 14(657): eabl9605, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1986328

ABSTRACT

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Humans , Macaca mulatta , Spike Glycoprotein, Coronavirus
7.
Commun Biol ; 5(1): 766, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1967631

ABSTRACT

Studying the antibody response to SARS-CoV-2 informs on how the human immune system can respond to antigenic variants as well as other SARS-related viruses. Here, we structurally identified a YYDRxG motif encoded by IGHD3-22 in CDR H3 that facilitates antibody targeting to a functionally conserved epitope on the SARS-CoV-2 receptor binding domain. A computational search for a YYDRxG pattern in publicly available sequences uncovered 100 such antibodies, many of which can neutralize SARS-CoV-2 variants and SARS-CoV. Thus, the YYDRxG motif represents a common convergent solution for the human humoral immune system to target sarbecoviruses including the Omicron variant. These findings suggest an epitope-targeting strategy to identify potent and broadly neutralizing antibodies for design of pan-sarbecovirus vaccines and antibody therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes/genetics , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 119(29): e2205784119, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1908386

ABSTRACT

Many neutralizing antibodies (nAbs) elicited to ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through natural infection and vaccination have reduced effectiveness to SARS-CoV-2 variants. Here, we show that therapeutic antibody ADG20 is able to neutralize SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize a broad range of VOCs, albeit with reduced potency against Omicron. Thus, this conserved and vulnerable site can be exploited for the design of universal vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Epitopes/immunology , Humans , Neutralization Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
Nat Immunol ; 23(6): 960-970, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873528

ABSTRACT

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus
11.
Commun Biol ; 5(1): 342, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1784032

ABSTRACT

Three betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks could occur. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-CoV protection. We previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 spike, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and binds to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is maintained against the Alpha, Delta, Gamma and Omicron variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region. Negative stain electron microscopy and a 1.74 Å crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Spike Glycoprotein, Coronavirus/chemistry
12.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1673344

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral , COVID-19/immunology , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
13.
Nat Commun ; 13(1): 462, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1650125

ABSTRACT

As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Affinity/immunology , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Neutralization Tests/methods , Pandemics , Peptide Library , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
14.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1583226

ABSTRACT

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Lymph/drug effects , Saponins/pharmacology , Toll-Like Receptors/agonists , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Lymph/physiology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Rats , Rats, Wistar
15.
Biotechnol Bioeng ; 119(2): 663-666, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525413

ABSTRACT

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the coronavirus disease 2019 (COVID-19) pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-severe acute respiratory syndrome coronavirus 2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for preclinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , CHO Cells , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Clinical Trials, Phase I as Topic/methods , Clinical Trials, Phase I as Topic/standards , Cricetulus , Pandemics , Transposases , Viral Load
16.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1387101

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
17.
Sci Adv ; 7(31)2021 07.
Article in English | MEDLINE | ID: covidwho-1388435

ABSTRACT

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/chemistry , HIV Infections/immunology , HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , AIDS Vaccines/chemistry , Animals , COVID-19/immunology , Female , HIV Antibodies/immunology , HIV-1/immunology , Humans , Macaca mulatta , Rabbits , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , env Gene Products, Human Immunodeficiency Virus/immunology
18.
J Immunol ; 207(1): 344-351, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1286955

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Subject(s)
Antibodies, Neutralizing/analysis , Neutralization Tests , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Cohort Studies , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
19.
EBioMedicine ; 68: 103390, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1267655

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions. FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity. INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S. C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. ONE SENTENCE SUMMARY: The host immune response in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/administration & dosage , COVID-19/genetics , Gene Expression Profiling/methods , Interleukin-15/genetics , Receptors, Interleukin-15/genetics , Virus Diseases/genetics , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Artificial Intelligence , Autopsy , COVID-19/drug therapy , COVID-19/immunology , Cricetinae , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Databases, Genetic , Disease Models, Animal , Gene Regulatory Networks/drug effects , Genetic Markers/drug effects , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Interleukin-15/blood , Lung/immunology , Mesocricetus , Pandemics , Receptors, Interleukin-15/blood , Virus Diseases/immunology
20.
Nat Commun ; 12(1): 3309, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1260940

ABSTRACT

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning/methods , Pandemics , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/virology , Cell Line , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Databases, Pharmaceutical , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Mesocricetus , Nelfinavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL