Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Cannabis Res ; 3(1): 45, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1448507

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a life-threatening clinical syndrome whose potential to become one of the most grievous challenges of the healthcare system evidenced by the COVID-19 pandemic. Considering the lack of target-specific treatment for ARDS, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve quality of life and outcomes for ARDS patients. ARDS is a systemic inflammatory disease starting with the pulmonary system and involves all other organs in a morbid bidirectional fashion. Mounting evidence including our findings supporting the notion that cannabinoids have potential to be targeted as regulatory therapeutic modalities in the treatment of inflammatory diseases. Therefore, it is plausible to test their capabilities as alternative therapies in the treatment of ARDS. In this study, we investigated the potential protective effects of cannabichromene (CBC) in an experimental model of ARDS. METHODS: We used, for the first time, an inhalant CBC treatment as a potential therapeutic target in a murine model of ARDS-like symptoms. ARDS was induced by intranasal administration of Poly(I:C), a synthetic mismatched double-stranded RNA, into the C57BL/6 mice (6-10 male mice/group, including sham, placebo, and CBC treated), three once-daily doses followed by a daily dose of inhalant CBC or placebo for the period of 8 days starting the first dose 2 h after the second Poly(I:C) treatment. We employed histologic, immunohistochemistry, and flow cytometry methods to assess the findings. Statistical analysis was performed by using one way analysis of variance (ANOVA) followed by Newman-Keuls post hoc test to determine the differences among the means of all experimental groups and to establish significance (p < 0.05) among all groups. RESULTS: Our data showed that CBC was able to reverse the hypoxia (increasing blood O2 saturation by 8%), ameliorate the symptoms of ARDS (reducing the pro-inflammatory cytokines by 50% in lung and blood), and protect the lung tissues from further destruction. Further analysis showed that CBC may wield its protective effects through transient receptor potential (TRP) cation channels, TRPA1 and TRPV1, increasing their expression by 5-folds in lung tissues compared to sham and untreated mice, re-establishing the homeostasis and immune balance. CONCLUSION: Our findings suggest that inhalant CBC may be an effective alternative therapeutic target in the treatment of ARDS. In addition, Increased expression of TRPs cation channels after CBC treatment proposes a novel role for TRPs (TRPA1 and TRPV2) as new potential mechanism to interpret the beneficial effects of CBC as well as other cannabinoids in the treatment of ARDS as well as other inflammatory diseases. Importantly, delivering CBC through an inhaler device is a translational model supporting the feasibility of trial with human subjects, authorizing further research.

2.
J Cell Mol Med ; 24(21): 12869-12872, 2020 11.
Article in English | MEDLINE | ID: covidwho-863121

ABSTRACT

Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes. In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system. By administering intranasal Poly (I:C), a synthetic viral dsRNA, while we were able to mimic the symptoms of ARDS in a murine model, interestingly, there was a significant decrease in the expression of apelin in both blood and lung tissues. CBD treatment was able to reverse the symptoms of ARDS towards a normal level. Importantly, CBD treatment increased the apelin expression significantly, suggesting a potential crosstalk between apelinergic system and CBD may be the therapeutic target in the treatment of inflammatory diseases such as COVID-19 and many other pathologic conditions.


Subject(s)
Apelin/metabolism , Cannabidiol/pharmacology , Respiratory Distress Syndrome/drug therapy , Administration, Intranasal , Animals , Lung/drug effects , Lung/pathology , Male , Mice, Inbred C57BL , Poly I-C/toxicity , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology
3.
Cannabis Cannabinoid Res ; 5(3): 197-201, 2020.
Article in English | MEDLINE | ID: covidwho-638503

ABSTRACT

Introduction: In the absence of effective antivirals and vaccination, the pandemic of COVID-19 remains the most significant challenge to our health care system in decades. There is an urgent need for definitive therapeutic intervention. Clinical reports indicate that the cytokine storm associated with acute respiratory distress syndrome (ARDS) is the leading cause of mortality in severe cases of some respiratory viral infections, including COVID-19. In recent years, cannabinoids have been investigated extensively due to their potential effects on the human body. Among all cannabinoids, cannabidiol (CBD) has demonstrated potent anti-inflammatory effects in a variety of pathological conditions. Therefore, it is logical to explore whether CBD can reduce the cytokine storm and treat ARDS. Materials and Methods: In this study, we show that intranasal application of Poly(I:C), a synthetic analogue of viral double-stranded RNA, simulated symptoms of severe viral infections inducing signs of ARDS and cytokine storm. Discussion: The administration of CBD downregulated the level of proinflammatory cytokines and ameliorated the clinical symptoms of Poly I:C-induced ARDS. Conclusion: Our results suggest a potential protective role for CBD during ARDS that may extend CBD as part of the treatment of COVID-19 by reducing the cytokine storm, protecting pulmonary tissues, and re-establishing inflammatory homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL