Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Year range
1.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326771

ABSTRACT

The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine. However, wee show that Delta breakthrough cases, subjects who were vaccinated after SARS-CoV-2 infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth indicate that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance spike-specific antibody responses. Neutralization of the genetically divergent SARS-CoV, however, was moderate with all four cohorts examined, except after four exposures to the SARS-CoV-2 spike, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.

2.
Topics in Antiviral Medicine ; 29(1):304-305, 2021.
Article in English | EMBASE | ID: covidwho-1250563

ABSTRACT

Background: The emergence of SARS-CoV-2 viral variants threatens current anti-viral and preventative strategies, including monoclonal antibodies and vaccines. Critically, the limited supply of vaccines and the complex logistics surrounding the delivery of infusion-based therapies herald the need for an easily produced, distributed, and specific direct-acting antiviral for COVID-19 that limits progression of illness and ideally prevents transmission. Methods: The efficacy of molnupiravir was evaluated in a double-blind, randomized, placebo-controlled, Phase 2 dose-range finding study using realtime polymerase chain reaction (RT-PCR) and virus isolation was conducted at 11 study sites in the U.S. Participants were randomized if they had signs or symptoms of COVID-19 within 7 days, and a positive SARS-CoV-2 RT-PCR within 4 days of enrollment. Initially, participants were randomized in a 1:1 ratio to receive 200 mg molnupiravir or placebo twice daily for 5 days. Subsequently, in the dose-range finding portion of the study, participants were randomized in a 3:1 ratio to receive 200, 400, or 800 mg molnupiravir or placebo twice daily for 5 days. Nasopharyngeal swabs were analyzed from 175 subjects at enrollment, Day 3, and Day 5 for SARS-CoV-2 infectivity. Samples were stored at 4°C for up to 72 hours, shipped refrigerated, aliquoted, and stored at -80°C until testing. Vero E6 cell monolayers were infected with the sample for 1 hour. Culture medium was analyzed for viral load at 2 and 5 days post-infection by RT-PCR. Results: Seventy-eight (45%) participants, median 4.62 days (min. 1.40, max. 7.54) from symptom onset, had a positive SARS-CoV-2 culture at enrollment (52 on active and 26 on placebo). The percentage of participants with a positive viral culture at enrollment who were positive on Day 3 was 20.4% on active and 28% on placebo (p = 0.56). At day 5, 24% of placebo participants were culturethe positive compared to none treated with molnupiravir (p = 0.001). Between treatment, comparisons were performed using Fisher's exact test. Conclusion: This is the first demonstration of reduced infectiousness by antiviral therapy in people with SARS-2 infection. This simple, short-course oral therapy may benefit individuals and public health and is unlikely to be impacted by spike-protein variants.

SELECTION OF CITATIONS
SEARCH DETAIL