Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.981
Filter
2.
Cell Rep ; 41(7): 111650, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2086004

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key toward next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2-5/IGLV2-14 represents a public antibody response to the receptor-binding domain (RBD) that potently cross-neutralizes a broad range of VOCs, including Omicron and its sub-lineages. Detailed molecular analysis shows that the complementarity-determining region H3 sequences of IGHV2-5/IGLV2-14-encoded RBD antibodies have a preferred length of 11 amino acids and a conserved HxIxxI motif. In addition, these antibodies have a strong allelic preference due to an allelic polymorphism at amino acid residue 54 of IGHV2-5, which is located at the paratope. These findings have important implications for understanding cross-neutralizing antibody responses to SARS-CoV-2 and its heterogenicity at the population level as well as the development of a universal COVID-19 vaccine.


Subject(s)
Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Humans , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19 Vaccines , Receptors, Virus/metabolism , SARS-CoV-2
3.
Science ; 378(6620): 619-627, 2022 11 11.
Article in English | MEDLINE | ID: covidwho-2078696

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Immunologic Memory , Memory B Cells/immunology
4.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Article in English | MEDLINE | ID: covidwho-2077202

ABSTRACT

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Immunogenicity, Vaccine , Child , Child, Preschool , Humans , Infant , Young Adult , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Treatment Outcome , Adolescent , Adult
6.
Nature ; 586(7831): 776-778, 2020 10.
Article in English | MEDLINE | ID: covidwho-2077076

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Wuhan in December 2019 and caused coronavirus disease 2019 (COVID-19)1,2. In 2003, the closely related SARS-CoV had been detected in domestic cats and a dog3. However, little is known about the susceptibility of domestic pet mammals to SARS-CoV-2. Here, using PCR with reverse transcription, serology, sequencing the viral genome and virus isolation, we show that 2 out of 15 dogs from households with confirmed human cases of COVID-19 in Hong Kong were found to be infected with SARS-CoV-2. SARS-CoV-2 RNA was detected in five nasal swabs collected over a 13-day period from a 17-year-old neutered male Pomeranian. A 2.5-year-old male German shepherd was positive for SARS-CoV-2 RNA on two occasions and virus was isolated from nasal and oral swabs. Antibody responses were detected in both dogs using plaque-reduction-neutralization assays. Viral genetic sequences of viruses from the two dogs were identical to the virus detected in the respective human cases. The dogs remained asymptomatic during quarantine. The evidence suggests that these are instances of human-to-animal transmission of SARS-CoV-2. It is unclear whether infected dogs can transmit the virus to other animals or back to humans.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Dog Diseases/transmission , Dog Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Zoonoses/transmission , Zoonoses/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Dogs , Female , Hong Kong/epidemiology , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , SARS-CoV-2 , Time Factors
9.
N Engl J Med ; 387(14): 1279-1291, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2036976

ABSTRACT

BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Vaccines, Combined , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunogenicity, Vaccine/immunology , SARS-CoV-2 , Vaccines, Combined/immunology , Vaccines, Combined/therapeutic use , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
12.
PLoS Pathog ; 16(10): e1008942, 2020 10.
Article in English | MEDLINE | ID: covidwho-2021974

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of viral respiratory infection in children, and can cause severe lower respiratory tract infection in infants, the elderly, and immunocompromised patients. However, there remain no licensed vaccines or specific treatments for hMPV infection. Although the hMPV fusion (F) protein is the sole target of neutralizing antibodies, the immunological properties of hMPV F remain poorly understood. To further define the humoral immune response to the hMPV F protein, we isolated two new human monoclonal antibodies (mAbs), MPV458 and MPV465. Both mAbs are neutralizing in vitro and were determined to target a unique antigenic site using competitive biolayer interferometry. We determined both MPV458 and MPV465 have higher affinity for monomeric hMPV F than trimeric hMPV F. MPV458 was co-crystallized with hMPV F, and the mAb primarily interacts with an alpha helix on the F2 region of the hMPV F protein. Surprisingly, the major epitope for MPV458 lies within the trimeric interface of the hMPV F protein, suggesting significant breathing of the hMPV F protein must occur for host immune recognition of the novel epitope. In addition, significant glycan interactions were observed with a somatically mutated light chain framework residue. The data presented identifies a novel epitope on the hMPV F protein for epitope-based vaccine design, and illustrates a new mechanism for human antibody neutralization of viral glycoproteins.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Pneumovirus/immunology , Antibodies, Neutralizing/pharmacology , Epitopes/immunology , Humans , Metapneumovirus/immunology , Paramyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology
13.
Cell Death Dis ; 13(8): 741, 2022 Aug 27.
Article in English | MEDLINE | ID: covidwho-2016669

ABSTRACT

In addition to an inflammatory reaction, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-infected patients present lymphopenia, which we recently reported as being related to abnormal programmed cell death. As an efficient humoral response requires CD4 T-cell help, we hypothesized that the propensity of CD4 T cells to die may impact the quantity and quality of the humoral response in acutely infected individuals. In addition to specific immunoglobulins (Ig)A, IgM, and IgG against SARS-CoV-2 nucleocapsid (N), membrane (M), and spike (S1) proteins, we assessed the quality of IgG response by measuring the avidity index. Because the S protein represents the main target for neutralization and antibody-dependent cellular cytotoxicity responses, we also analyzed anti-S-specific IgG using S-transfected cells (S-Flow). Our results demonstrated that most COVID-19 patients have a predominant IgA anti-N humoral response during the early phase of infection. This specific humoral response preceded the anti-S1 in time and magnitude. The avidity index of anti-S1 IgG was low in acutely infected individuals compared to convalescent patients. We showed that the percentage of apoptotic CD4 T cells is inversely correlated with the levels of specific IgG antibodies. These lower levels were also correlated positively with plasma levels of CXCL10, a marker of disease severity, and soluble Fas ligand that contributes to T-cell death. Finally, we found lower S-Flow responses in patients with higher CD4 T-cell apoptosis. Altogether, these results demonstrate that individuals with high levels of CD4 T-cell apoptosis and CXCL10 have a poor ability to build an efficient anti-S response. Consequently, preventing CD4 T-cell death might be a strategy for improving humoral response during the acute phase, thereby reducing COVID-19 pathogenicity.


Subject(s)
Antibodies, Viral , CD4-Positive T-Lymphocytes , COVID-19 , Immunity, Humoral , Antibodies, Viral/immunology , Apoptosis , CD4-Positive T-Lymphocytes/cytology , COVID-19/immunology , Humans , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
14.
Front Immunol ; 13: 945021, 2022.
Article in English | MEDLINE | ID: covidwho-2005871

ABSTRACT

Autoantibodies to multiple targets are found during acute COVID-19. Whether all, or some, persist after 6 months, and their correlation with sustained anti-SARS-CoV-2 immunity, is still controversial. Herein, we measured antibodies to multiple SARS-CoV-2 antigens (Wuhan-Hu-1 nucleoprotein (NP), whole spike (S), spike subunits (S1, S2 and receptor binding domain (RBD)) and Omicron spike) and 102 human proteins with known autoimmune associations, in plasma from healthcare workers 8 months post-exposure to SARS-CoV-2 (n=31 with confirmed COVID-19 disease and n=21 uninfected controls (PCR and anti-SARS-CoV-2 negative) at baseline). IgG antibody responses to SARS-CoV-2 antigens were significantly higher in the convalescent cohort than the healthy cohort, highlighting lasting antibody responses up to 8 months post-infection. These were also shown to be cross-reactive to the Omicron variant spike protein at a similar level to lasting anti-RBD antibodies (correlation r=0.89). Individuals post COVID-19 infection recognised a common set of autoantigens, specific to this group in comparison to the healthy controls. Moreover, the long-term level of anti-Spike IgG was associated with the breadth of autoreactivity post-COVID-19. There were further moderate positive correlations between anti-SARS-CoV-2 responses and 11 specific autoantigens. The most commonly recognised autoantigens were found in the COVID-19 convalescent cohort. Although there was no overall correlation in self-reported symptom severity and anti-SARS-CoV-2 antibody levels, anti-calprotectin antibodies were associated with return to healthy normal life 8 months post infection. Calprotectin was also the most common target for autoantibodies, recognized by 22.6% of the overall convalescent cohort. Future studies may address whether, counter-intuitively, such autoantibodies may play a protective role in the pathology of long-COVID-19.


Subject(s)
Antibodies, Viral , COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral/immunology , Autoantibodies/immunology , Autoantigens , COVID-19/complications , COVID-19/immunology , Humans , Immunoglobulin G , Leukocyte L1 Antigen Complex/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
15.
J Virol ; 96(17): e0114022, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2001778

ABSTRACT

The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to a lesser extent than ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin-converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from 9 out of 10 animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7- to 8-fold less potent than the D614G. These results provide insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread. IMPORTANCE The ongoing emergence of SARS-CoV-2 Omicron variants with an extensive number of spike mutations poses a significant public health and zoonotic concern due to enhanced transmission fitness and escape from neutralizing antibodies. We studied three Omicron lineage variants (BA.1, BA.2, and BA.3) and found that transmembrane serine protease 2 has less influence on Omicron entry into cells than on D614G, and Omicron exhibits greater sensitivity to endosomal entry inhibition compared to D614G. In addition, Omicron displays more efficient usage of diverse animal species ACE2 receptors than D614G. Furthermore, due to Q493R/Q498R substitutions in spike, Omicron, but not D614G, can use the mouse ACE2 receptor. Finally, three doses of Pfizer/BNT162b2 mRNA vaccination elicit high neutralization titers against Omicron variants, although the neutralization titers are still 7- to 8-fold lower those that against D614G. These results may give insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , Immune Evasion , SARS-CoV-2 , Virus Internalization , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , Humans , Immune Evasion/immunology , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
16.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2000999

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Subject(s)
Proline , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Development , Vesicular Stomatitis , Viral Vaccines , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Humans , Mice , Proline/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology , Vesiculovirus/immunology , Viral Proteins/immunology , Viral Vaccines/immunology
18.
J Virol ; 96(17): e0058222, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992936

ABSTRACT

Emerging variants, especially the recent Omicron variant, and gaps in vaccine coverage threaten mRNA vaccine mediated protection against SARS-CoV-2. While children have been relatively spared by the ongoing pandemic, increasing case numbers and hospitalizations are now evident among children. Thus, it is essential to better understand the magnitude and breadth of vaccine-induced immunity in children against circulating viral variant of concerns (VOCs). Here, we compared the magnitude and breadth of humoral immune responses in adolescents and adults 1 month after the two-dose Pfizer (BNT162b2) vaccination. We found that adolescents (aged 11 to 16) demonstrated more robust binding antibody and neutralization responses against the wild-type SARS-CoV-2 virus spike protein contained in the vaccine compared to adults (aged 27 to 55). The quality of the antibody responses against VOCs in adolescents were very similar to adults, with modest changes in binding and neutralization of Beta, Gamma, and Delta variants. In comparison, a significant reduction of binding titers and a striking lack of neutralization was observed against the newly emerging Omicron variant for both adolescents and adults. Overall, our data show that a two-dose BNT162b2 vaccine series may be insufficient to protect against the Omicron variant. IMPORTANCE While plasma binding and neutralizing antibody responses have been reported for cohorts of infected and vaccinated adults, much less is known about the vaccine-induced antibody responses to variants including Omicron in children. This illustrates the need to characterize vaccine efficacy in key vulnerable populations. A third (booster) dose of BNTb162b was approved for children 12 to 15 years of age by the Food and Drug Administration (FDA) on January 1, 2022, and pediatric clinical trials are under way to evaluate the safety, immunogenicity, and effectiveness of a third dose in younger children. Similarly, variant-specific booster doses and pan-coronavirus vaccines are areas of active research. Our data show adolescents mounted stronger humoral immune responses after vaccination than adults. It also highlights the need for future studies of antibody durability in adolescents and children as well as the need for future studies of booster vaccination and their efficacy against the Omicron variant.


Subject(s)
Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Child , Humans , Immunization, Secondary , SARS-CoV-2/classification , SARS-CoV-2/immunology
19.
J Virol ; 96(17): e0011822, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992935

ABSTRACT

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes , Glycosylation , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit/immunology
20.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991767

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS Virus , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Conserved Sequence , Cricetinae , Cryoelectron Microscopy , Epitopes/immunology , Humans , Mice , Neutralization Tests , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL