Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 5.128
Filter
Add filters

Document Type
Year range
3.
Pharmacol Res ; 172: 105820, 2021 10.
Article in English | MEDLINE | ID: covidwho-1531713

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19/drug therapy , Enzyme Inhibitors/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/pharmacology , Binding, Competitive , Biological Products/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Chalcones/pharmacology , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Ginsenosides/pharmacology , Humans , Interferometry , Mice, Inbred C57BL , Molecular Dynamics Simulation , Phenols/pharmacology , Protein Binding
5.
Minerva Gastroenterol (Torino) ; 67(2): 190-195, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1535066

ABSTRACT

When looking for new antiviral compounds aimed to counteract the COVID-19, a disease caused by the recently identified novel Coronavirus (SARS-CoV-2), the knowledge of the main viral proteins is fundamental. The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase, and spike (S) protein. Molecular docking studies have highlighted that quercetin, a natural polyphenol belonging to the flavonol class, inhibits 3CLpro, PLpro and S proteins. Biophysical technics have then very recently confirmed that quercetin is reasonably a potent inhibitor of 3CLpro. The likely antiviral properties of quercetin are anyway challenged by its very poor oral bioavailability profile and any attempt to overcome this limit should be welcome. A phospholipid delivery form of quercetin (Quercetin Phytosome®) has been recently tested in humans to evaluate a possible improvement in oral bioavailability. After hydrolysis of the conjugated form (mainly glucuronide) of quercetin found in human plasma, the pharmacokinetics results have demonstrated an increased bioavailability rate by about 20-fold for total quercetin. It has been also observed that the presence of specific glucuronidase could yield free systemic quercetin in human body. Taking also into considerations its anti-inflammatory and thrombin-inhibitory actions, a bioavailable form of quercetin, like Quercetin Phytosome®, should be considered a possible candidate to clinically face COVID-19.


Subject(s)
COVID-19/drug therapy , Quercetin/therapeutic use , Antiviral Agents/therapeutic use , Humans , Molecular Docking Simulation
6.
Biosci Trends ; 15(5): 345-349, 2021 Nov 21.
Article in English | MEDLINE | ID: covidwho-1528987

ABSTRACT

Coronavirus disease 19 (COVID-19) continues to rage as a global pandemic. A number of potential therapeutic agents have been explored over the past year or two. However, numerous drugs that were expected to prove highly effective, such as lopinavir/ritonavir and remdesivir, have been found to have little benefit in large clinical trials. Interleukin-6 receptor antagonists, glucocorticoids, Janus kinase inhibitors, and some antivirals have been found to provide significant benefits in terms of reducing viral load, reducing the time of nucleic acid conversion, or improving survival. For example, bamlanivimab and etesevimab, which are newly designed monoclonal antibodies against the surface spike protein S1 subunit receptor-binding domain (RBD) of SARS-CoV-2, have a significant effect on reducing the viral load and the hospitalization rate of patients with mild COVID-19. Several vaccines against SARS-CoV-2 have been widely administered worldwide and have provided good protection. Nevertheless, the increasingly hardy variants of the virus have raised the requirements for vaccine design. Perhaps RBD-based vaccines are a viable way to defend against variants, but this still needs to be verified in a large sample. Therefore, this paper provides an update on the treatment options for COVID-19 based on three previously proposed dimensions of drug screening: standard assays of existing broad-spectrum antivirals, screening of chemical libraries, and redevelopment of new, specific drugs.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Repositioning , Animals , Antibodies, Monoclonal/therapeutic use , COVID-19 Vaccines , Humans , Randomized Controlled Trials as Topic
7.
JAMA ; 326(18): 1807-1817, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1527380

ABSTRACT

Importance: A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. Objective: To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. Design, Setting, and Participants: A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. Interventions: Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. Main Outcomes and Measures: The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and ≥1 serious adverse reactions at 28 days). Results: Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). Conclusions and Relevance: Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT04509973 and ctri.nic.in Identifier: CTRI/2020/10/028731.


Subject(s)
COVID-19/drug therapy , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Life Support Care , Aged , COVID-19/complications , COVID-19/mortality , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Female , Glucocorticoids/adverse effects , Humans , Hypoxia/etiology , Hypoxia/therapy , Male , Middle Aged , Mycoses/etiology , Respiration, Artificial , Shock, Septic/etiology , Single-Blind Method
8.
Psychiatr Danub ; 33(3): 402-410, 2021.
Article in English | MEDLINE | ID: covidwho-1527117

ABSTRACT

BACKGROUND: It is very important to protect the physical, mental and social health of healthcare workers who are at risk, are faced with a difficult pandemic process, and have been infected with the disease. In previous studies, the thoughts of healthcare professionals who gave care to coronavirus patients were investigated. The present study is the first study in which experiences and thoughts of healthcare professionals who had coronavirus disease were investigated, and unlike other studies, data were collected through one-to-one, face-to-face interviews. This study was conducted to determine the feelings, thoughts and experiences of healthcare professionals who recovered after being diagnosed with COVID-19. SUBJECTS AND METHODS: This qualitative study was designed based on Husserlian's phenomenological approach. The participants were selected from healthcare professionals receiving COVID-19 treatment through the purposive sampling method. The interviews were held between September 2020 and February 2021. Colaizzi's qualitative analysis method was used. RESULTS: After the analysis of the interviews, three themes and seven sub-themes emerged. The theme "fear" has three sub-themes: "fear of the unknown", "fear of being infected again" and "fear of transmitting the disease". The theme "social isolation" has two sub-themes: "Unhappiness" and "stigma". Finally, the theme "lack of motivation" has two sub-themes: "excessive workload" and "Inadequate number of employees". CONCLUSIONS: In order to help healthcare workers manage these psychosocial problems they experience, managers should make appropriate planning and should give them psychosocial support. It is recommended that the criteria regarding healthcare professionals' starting work again after they survive the COVID-19 should be reviewed and revised. In particular, healthcare workers who survive illness but cannot fully recover should be evaluated physically and psychologically before going back to work.


Subject(s)
COVID-19 , COVID-19/drug therapy , Delivery of Health Care , Emotions , Health Personnel , Humans , Qualitative Research , SARS-CoV-2
11.
Ann Intern Med ; 174(1): JC2, 2021 01.
Article in English | MEDLINE | ID: covidwho-1526979

ABSTRACT

SOURCE CITATION: Lamontagne F, Agoritsas T, Macdonald H, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;370:m3379. 32887691.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19/drug therapy , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Practice Guidelines as Topic , Betacoronavirus , Critical Illness , Humans , Pandemics , SARS-CoV-2 , World Health Organization
12.
Front Public Health ; 9: 715931, 2021.
Article in English | MEDLINE | ID: covidwho-1526798

ABSTRACT

Widespread acceptance of COVID-19 vaccination is the next major step in fighting the pandemic. However, significant variations are observed in the willingness to take the vaccination by citizens across different countries. Arguably, differences in vaccination intentions will be influenced by beliefs around vaccines to influence health. Often perceptions of what others are doing and the information available guide individuals' behaviors for vaccination. This is more so in the digital age with the influence of the internet and media. This study aims to determine the factors that impact willingness to vaccinate for COVID-19. We examined factors associated with acceptance of vaccine based on (1) constructs of the Health Belief Model (HBM), (2) sources of information, (3) social media usage, (4) knowledge of COVID-19 treatment, and (5) perception of government's efforts for mitigation. Randomly sampled online survey data was collected by a global firm between December 2020 and January 2021 from 372 citizens (with a response rate of 96.6%) from multiple regions, including North America, the Middle East, Europe, and Asia. Ordered probit regression suggests that the health belief model constructs hold. Perceived severity of COVID-19 (P < 0.001) and action cues of others taking the vaccine positively influences a subject's vaccine intent (P < 0.001), perceived benefits and perceived efficacy of the vaccine positively influences a subject's vaccine intent (P < 0.001). Perceived barriers negatively influence vaccine intent (P < 0.001). Interestingly as for media usage, mainstream media (e.g., TV, newspaper) (P = 0.006) and social media (P = 0.013) both negatively influence a subject's vaccine intent. Social media platforms that are more entertainment and social-based, such as Whatsapp, Instagram, and YouTube, have a negative and significant influence on vaccine intent (P = 0.061), compared to other more information-based social media platforms (e.g., Twitter, LinkedIn). Knowledge of COVID-19 treatment positively influences vaccine intent (P = 0.023). Lastly, governmental efforts' perceived reliability in mitigation strategy (P = 0.028) and response efforts (P = 0.004) negatively influence vaccine intent. The study highlights the "wait-and-see" action cue from others and leaders in the community. It also informs the importance of shaping media information for vaccination through informative media and social media outlets to counteract any misinformation.


Subject(s)
COVID-19 , Social Media , Vaccines , COVID-19/drug therapy , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Immunity, Herd , Reproducibility of Results , SARS-CoV-2 , Vaccination
13.
JAMA ; 326(17): 1703-1712, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1525396

ABSTRACT

Importance: Acutely ill inpatients with COVID-19 typically receive antithrombotic therapy, although the risks and benefits of this intervention among outpatients with COVID-19 have not been established. Objective: To assess whether anticoagulant or antiplatelet therapy can safely reduce major adverse cardiopulmonary outcomes among symptomatic but clinically stable outpatients with COVID-19. Design, Setting, and Participants: The ACTIV-4B Outpatient Thrombosis Prevention Trial was designed as a minimal-contact, adaptive, randomized, double-blind, placebo-controlled trial to compare anticoagulant and antiplatelet therapy among 7000 symptomatic but clinically stable outpatients with COVID-19. The trial was conducted at 52 US sites between September 2020 and June 2021; final follow-up was August 5, 2021. Prior to initiating treatment, participants were required to have platelet count greater than 100 000/mm3 and estimated glomerular filtration rate greater than 30 mL/min/1.73 m2. Interventions: Random allocation in a 1:1:1:1 ratio to aspirin (81 mg orally once daily; n = 164), prophylactic-dose apixaban (2.5 mg orally twice daily; n = 165), therapeutic-dose apixaban (5 mg orally twice daily; n = 164), or placebo (n = 164) for 45 days. Main Outcomes and Measures: The primary end point was a composite of all-cause mortality, symptomatic venous or arterial thromboembolism, myocardial infarction, stroke, or hospitalization for cardiovascular or pulmonary cause. The primary analyses for efficacy and bleeding events were limited to participants who took at least 1 dose of trial medication. Results: On June 18, 2021, the trial data and safety monitoring board recommended early termination because of lower than anticipated event rates; at that time, 657 symptomatic outpatients with COVID-19 had been randomized (median age, 54 years [IQR, 46-59]; 59% women). The median times from diagnosis to randomization and from randomization to initiation of study treatment were 7 days and 3 days, respectively. Twenty-two randomized participants (3.3%) were hospitalized for COVID-19 prior to initiating treatment. Among the 558 patients who initiated treatment, the adjudicated primary composite end point occurred in 1 patient (0.7%) in the aspirin group, 1 patient (0.7%) in the 2.5-mg apixaban group, 2 patients (1.4%) in the 5-mg apixaban group, and 1 patient (0.7%) in the placebo group. The risk differences compared with placebo for the primary end point were 0.0% (95% CI not calculable) in the aspirin group, 0.7% (95% CI, -2.1% to 4.1%) in the 2.5-mg apixaban group, and 1.4% (95% CI, -1.5% to 5.0%) in the 5-mg apixaban group. Risk differences compared with placebo for bleeding events were 2.0% (95% CI, -2.7% to 6.8%), 4.5% (95% CI, -0.7% to 10.2%), and 6.9% (95% CI, 1.4% to 12.9%) among participants who initiated therapy in the aspirin, prophylactic apixaban, and therapeutic apixaban groups, respectively, although none were major. Findings inclusive of all randomized patients were similar. Conclusions and Relevance: Among symptomatic clinically stable outpatients with COVID-19, treatment with aspirin or apixaban compared with placebo did not reduce the rate of a composite clinical outcome. However, the study was terminated after enrollment of 9% of participants because of an event rate lower than anticipated. Trial Registration: ClinicalTrials.gov Identifier: NCT04498273.


Subject(s)
Aspirin/therapeutic use , COVID-19/drug therapy , Factor Xa Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyridones/therapeutic use , Thrombosis/prevention & control , Adult , Aspirin/adverse effects , COVID-19/complications , Dose-Response Relationship, Drug , Double-Blind Method , Early Termination of Clinical Trials , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/adverse effects , Female , Hemorrhage/chemically induced , Hospitalization , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Pyridones/administration & dosage , Pyridones/adverse effects
14.
Molecules ; 26(20)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1526851

ABSTRACT

There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = -7.78, -7.65, -6.39, -6.28, -8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.


Subject(s)
Alkaloids/chemistry , SARS-CoV-2/metabolism , Alkaloids/isolation & purification , Alkaloids/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Halogenation , Humans , Isoxazoles/chemistry , Isoxazoles/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Tyrosine/metabolism
15.
Expert Rev Anticancer Ther ; 21(12): 1371-1383, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526146

ABSTRACT

INTRODUCTION: For the clinical treatment of cancer patients, coronavirus (SARS-CoV-2) can cause serious immune-related problems. Cancer patients, who experience immunosuppression due to the pathogenesis and severity of disease, may become more aggressive due to multiple factors such as age, comorbidities, and immunosuppression. In this pandemic era, COVID-19 causes lymphopenia, cancer cell awakening, inflammatory diseases, and a cytokine storm that worsens disease-related morbidity and prognosis. AREAS COVERED: We discuss all the risk factors of COVID-19 associated with cancer patients and propose new strategies to use antiviral and anticancer drugs for therapeutic purposes. We bring new drugs, cancers and COVID-19 treatment strategies together to address the immune system challenges faced by oncologists. EXPERT OPINION: The chronic inflammatory microenvironment caused by COVID-19 awakens dormant cancer cells through inflammation and autoimmune activation. Drug-related strategies to ensure that clinical treatment can reduce the susceptibility of cancer patients to COVID-19, and possible counter-measures to minimize the harm caused by the COVID-19 have been outlined. The response to the pandemic and recovery has been elaborated, which can provide information for long-term cancer treatment and speed up the optimization process.


Subject(s)
COVID-19/complications , Inflammation/drug therapy , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , COVID-19/immunology , Humans , Inflammation/immunology , Inflammation/virology , Neoplasms/immunology , Neoplasms/virology , Prognosis , Risk Factors , Severity of Illness Index
16.
Cell Rep ; 37(4): 109882, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1525720

ABSTRACT

Remdesivir (RDV), a nucleotide analog with broad-spectrum features, has exhibited effectiveness in COVID-19 treatment. However, the precise working mechanism of RDV when targeting the viral RNA-dependent RNA polymerase (RdRP) has not been fully elucidated. Here, we solve a 3.0-Å structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRP elongation complex (EC) and assess RDV intervention in polymerase elongation phase. Although RDV could induce an "i+3" delayed termination in meta-stable complexes, only pausing and subsequent elongation are observed in the EC. A comparative investigation using an enterovirus RdRP further confirms similar delayed intervention and demonstrates that steric hindrance of the RDV-characteristic 1'-cyano at the -4 position is responsible for the "i+3" intervention, although two representative Flaviviridae RdRPs do not exhibit similar behavior. A comparison of representative viral RdRP catalytic complex structures indicates that the product RNA backbone encounters highly conserved structural elements, highlighting the broad-spectrum intervention potential of 1'-modified nucleotide analogs in anti-RNA virus drug development.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase/drug effects , SARS-CoV-2/drug effects , Viral Proteins/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , COVID-19/drug therapy , Cryoelectron Microscopy , Humans , RNA, Viral/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Virus Replication/drug effects
17.
Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med ; 29(Special Issue): 1247-1250, 2021 Aug.
Article in Russian | MEDLINE | ID: covidwho-1524922

ABSTRACT

Interest in chloroquine, and its analog with a more favorable safety profile - hydroxychloroquine, in 2020 is certainly associated with the outbreak of a new coronavirus infection, SARS-CoV-2. The high pathogenicity and lack of specific immunity in the population caused the rapid spread of infection with an extraordinary increase in the burden on the health systems of many countries. In such conditions, it was necessary to quickly find and implement effective methods of treatment and prevention. One of the most promising candidates for this role was hydroxychloroquine, as a multi-purpose drug with a well-studied safety profile and a rich history of use. The article describes some historical stages of the study of chloroquine and its derivatives starting from the 19th century and ending in 2020. The experience of its use for the treatment of diseases such as malaria, rheumatoid arthritis, diabetes, bronchial asthma, photosensitivity and skin porphyria was reviewed. Separately, some historical aspects of its use for the treatment of viral and oncological diseases were considered. The bibliometric method used in this scientific work clearly demonstrates the dynamics of the changing interest of the scientific community in chloroquine and its derivatives. Chloroquine and its derivatives can definitely be attributed to «pharmaceutical centenarians¼ with an intense life that continues.


Subject(s)
COVID-19 , Clinical Medicine , Aged, 80 and over , Antiviral Agents/therapeutic use , Bibliometrics , COVID-19/drug therapy , Chloroquine/pharmacology , Humans , SARS-CoV-2
18.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: covidwho-1522913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 µM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency-Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects , Virus Replication/drug effects , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Evans Blue/pharmacology , Humans , Molecular Docking Simulation , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sulfones/pharmacology , Surface Plasmon Resonance , Vero Cells
20.
Transl Psychiatry ; 11(1): 591, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1521723

ABSTRACT

Drug repurposing is an invaluable strategy to identify new uses for existing drug therapies that overcome many of the time and financial costs associated with novel drug development. The COVID-19 pandemic has driven an unprecedented surge in the development and use of bioinformatic tools to identify candidate repurposable drugs. Using COVID-19 as a case study, we discuss examples of machine-learning and signature-based approaches that have been adapted to rapidly identify candidate drugs. The Library of Integrated Network-based Signatures (LINCS) and Connectivity Map (CMap) are commonly used repositories and have the advantage of being amenable to use by scientists with limited bioinformatic training. Next, we discuss how these recent advances in bioinformatic drug repurposing approaches might be adapted to identify repurposable drugs for CNS disorders. As the development of novel therapies that successfully target the cause of neuropsychiatric and neurological disorders has stalled, there is a pressing need for innovative strategies to treat these complex brain disorders. Bioinformatic approaches to identify repurposable drugs provide an exciting avenue of research that offer promise for improved treatments for CNS disorders.


Subject(s)
COVID-19 , Pharmaceutical Preparations , COVID-19/drug therapy , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...