Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.080
Filter
1.
Front Immunol ; 13: 934264, 2022.
Article in English | MEDLINE | ID: covidwho-2198854

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for COVID-19, has caused a global pandemic. Observational studies revealed a condition, herein called as Long-COVID syndrome (PC), that affects both moderately and severely infected patients, reducing quality-of-life. The mechanism/s underlying the onset of fibrotic-like changes in PC are still not well defined. The goal of this study was to understand the involvement of the Absent in melanoma-2 (AIM2) inflammasome in PC-associated lung fibrosis-like changes revealed by chest CT scans. Peripheral blood mononuclear cells (PBMCs) obtained from PC patients who did not develop signs of lung fibrosis were not responsive to AIM2 activation by Poly dA:dT. In sharp contrast, PBMCs from PC patients with signs of lung fibrosis were highly responsive to AIM2 activation, which induced the release of IL-1α, IFN-α and TGF-ß. The recognition of Poly dA:dT was not due to the activation of cyclic GMP-AMP (cGAMP) synthase, a stimulator of interferon response (cGAS-STING) pathways, implying a role for AIM2 in PC conditions. The release of IFN-α was caspase-1- and caspase-4-dependent when AIM2 was triggered. Instead, the release of pro-inflammatory IL-1α and pro-fibrogenic TGF-ß were inflammasome independent because the inhibition of caspase-1 and caspase-4 did not alter the levels of the two cytokines. Moreover, the responsiveness of AIM2 correlated with higher expression of the receptor in circulating CD14+ cells in PBMCs from patients with signs of lung fibrosis.


Subject(s)
COVID-19 , DNA-Binding Proteins , Pulmonary Fibrosis , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Carrier Proteins , Caspase 1/immunology , DNA-Binding Proteins/blood , DNA-Binding Proteins/immunology , Humans , Inflammasomes/blood , Inflammasomes/immunology , Interferon-alpha/metabolism , Leukocytes, Mononuclear/immunology , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Transforming Growth Factor beta/metabolism
2.
J Allergy Clin Immunol ; 150(3): 594-603.e2, 2022 09.
Article in English | MEDLINE | ID: covidwho-2179904

ABSTRACT

BACKGROUND: Lymphopenia is predictive of survival in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: The aim of this study was to understand the cause of the lymphocyte count drop in severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Monocytic production of reactive oxygen species (ROSs) and T-cell apoptosis were measured by flow cytometry, DNA damage in PBMCs was measured by immunofluorescence, and angiotensin II (AngII) was measured by ELISA in patients infected with SARS-CoV-2 at admission to an intensive care unit (ICU) (n = 29) or not admitted to an ICU (n = 29) and in age- and sex-matched healthy controls. RESULTS: We showed that the monocytes of certain patients with COVID-19 spontaneously released ROSs able to induce DNA damage and apoptosis in neighboring cells. Of note, high ROS production was predictive of death in ICU patients. Accordingly, in most patients, we observed the presence of DNA damage in up to 50% of their PBMCs and T-cell apoptosis. Moreover, the intensity of this DNA damage was linked to lymphopenia. SARS-CoV-2 is known to induce the internalization of its receptor, angiotensin-converting enzyme 2, which is a protease capable of catabolizing AngII. Accordingly, in certain patients with COVID-19 we observed high plasma levels of AngII. When looking for the stimulus responsible for their monocytic ROS production, we revealed that AngII triggers ROS production by monocytes via angiotensin receptor I. ROSs released by AngII-activated monocytes induced DNA damage and apoptosis in neighboring lymphocytes. CONCLUSION: We conclude that T-cell apoptosis provoked via DNA damage due to the release of monocytic ROSs could play a major role in COVID-19 pathogenesis.


Subject(s)
Angiotensin II , COVID-19 , Lymphopenia , Angiotensin II/blood , Apoptosis , COVID-19/diagnosis , COVID-19/pathology , DNA Damage , Humans , Reactive Oxygen Species , SARS-CoV-2 , T-Lymphocytes
3.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-2196306

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index
4.
Medicine (Baltimore) ; 100(34): e26933, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-2191058

ABSTRACT

ABSTRACT: It is presently unknown whether imported cases of the 2019 coronavirus disease (COVID-19) have different characteristics when compared with local cases. To compare the clinical characteristics of local cases of COVID-19 in China compared with those imported from abroad.This was a retrospective study of confirmed cases of COVID-19 admitted at the Beijing Ditan Fever Emergency Department between February 29th, 2020, and March 27th, 2020. The clinical characteristics of the patients were compared between local and imported cases.Compared with local cases, the imported cases were younger (27.3 ±â€Š11.7 vs. 43.6 ±â€Š22.2 years, P < .001), had a shorter interval from disease onset to admission (1.0 (0.0-2.0) vs 4.0 (2.0-7.0) days, P < .001), lower frequencies of case contact (17.4% vs 94.1%, P < .001), fever (39.1% vs 82.4%, P < .001), cough (33.3% vs 51.0%, P = .03), dyspnea (1.9% vs 11.8%, P = .01), fatigue (7.5% vs. 27.5%, P = 0.001), muscle ache (4.7% vs. 25.5%, P < 0.001), and comorbidities (P < .05). The imported cases were less severe than the local cases, with 40.4% versus 5.9% mild cases, 2.8% versus 15.7% severe cases, and no critical cases (P < .001). The length of hospital stay was longer in imported cases than in local cases (32.3 ±â€Š14.5 vs 21.7 ±â€Š11.2 days, P < .001). The imported cases showed smaller biochemical perturbations than the local cases. More imported cases had no sign of pneumonia at computed tomography (45.0% vs 14.9%, P = .001), and none had pleural effusion (0% vs 14.9%, P < .001).Compared with local cases, the imported cases of COVID-19 presented with milder disease and less extensive symptoms and signs.


Subject(s)
COVID-19/epidemiology , COVID-19/pathology , Adult , Age Factors , Aged , COVID-19/complications , China/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Time-to-Treatment
5.
J Allergy Clin Immunol ; 147(1): 81-91, 2021 01.
Article in English | MEDLINE | ID: covidwho-2095538

ABSTRACT

BACKGROUND: Severe immunopathology may drive the deleterious manifestations that are observed in the advanced stages of coronavirus disease 2019 (COVID-19) but are poorly understood. OBJECTIVE: Our aim was to phenotype leukocyte subpopulations and the cytokine milieu in the lungs and blood of critically ill patients with COVID-19 acute respiratory distress syndrome (ARDS). METHODS: We consecutively included patients less than 72 hours after intubation following informed consent from their next of kin. Bronchoalveolar lavage fluid was evaluated by microscopy; bronchoalveolar lavage fluid and blood were assessed by 10-color flow cytometry and a multiplex cytokine panel. RESULTS: Four mechanically ventilated patients (aged 40-75 years) with moderate-to-severe COVID-19 ARDS were included. Immature neutrophils dominated in both blood and lungs, whereas CD4 and CD8 T-cell lymphopenia was observed in the 2 compartments. However, regulatory T cells and TH17 cells were found in higher fractions in the lung. Lung CD4 and CD8 T cells and macrophages expressed an even higher upregulation of activation markers than in blood. A wide range of cytokines were expressed at high levels both in the blood and in the lungs, most notably, IL-1RA, IL-6, IL-8, IP-10, and monocyte chemoattactant protein-1, consistent with hyperinflammation. CONCLUSION: COVID-19 ARDS exhibits a distinct immunologic profile in the lungs, with a depleted and exhausted CD4 and CD8 T-cell population that resides within a heavily hyperinflammatory milieu.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lung/immunology , Lymphopenia/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Immunophenotyping , Lung/pathology , Lymphopenia/pathology , Male , Middle Aged , Respiratory Distress Syndrome/pathology , Th17 Cells/pathology
6.
Biochemistry (Mosc) ; 86(4): 389-396, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-2078751

ABSTRACT

The novel coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health emergency worldwide with over 118.27-million confirmed COVID-19 cases and 2.62-million deaths recorded, as of March 12, 2021. Although this disease primarily targets lungs, damages in other organs, such as heart, kidney, liver, and testis, may occur. Testis is the cornerstone of male reproduction, while reproductive health is the most valuable resource for continuity of the human race. Given the unique nature of SARS-CoV-2, the mechanisms of its impact on the testes have yet to be fully explored. Notably, coronaviruses have been found to invade target cells through the angiotensin-converting enzyme 2 receptor, which can be found in the respiratory, gastrointestinal, cardiovascular, urinary tract, and reproductive organs, such as testes. Coronavirus studies have suggested that testes might be a potential target for SARS-CoV-2 infection. The first etiopathogenic concept proposed by current hypotheses indicates that the virus can invade testes through the angiotensin-converting enzyme 2 receptor. Next, the activated inflammatory response in the testes, disease-associated fever, and COVID-19 medications might be implicated in testicular alterations. Although evidence regarding the presence of SARS-CoV-2 mRNA in semen remains controversial, this emphasizes the need for researchers to pay closer attention to sexually transmitted diseases and male fertility after recovering from COVID-19. In this review the latest updates regarding COVID-19-associated testicular dysfunction are summarized and possible pathogenic mechanisms are discussed.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Fertility , Pandemics , SARS-CoV-2/metabolism , Testis/metabolism , COVID-19/mortality , COVID-19/pathology , Humans , Male , Testis/pathology , Testis/virology
7.
Nutrients ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2066296

ABSTRACT

The link between being pregnant and overweight or obese and the infectivity and virulence of the SARS CoV-2 virus is likely to be caused by SARS-CoV-2 spike protein glycosylation, which may work as a glycan shield. Methylglyoxal (MGO), an important advanced glycation end-product (AGE), and glycated albumin (GA) are the results of poor subclinical glucose metabolism and are indices of oxidative stress. Forty-one consecutive cases of SARS-CoV-2-positive pregnant patients comprising 25% pre-pregnancy overweight women and 25% obese women were recruited. The aim of our study was to compare the blood levels of MGO and GA in pregnant women with asymptomatic and symptomatic SARS-CoV-2 infection with pregnant women without SARS-CoV-2 infection with low risk and uneventful pregnancies and to evaluate the relative perinatal outcomes. The MGO and GA values of the SARS-CoV-2 cases were statistically significantly higher than those of the negative control subjects. In addition, the SARS-CoV-2-positive pregnant patients who suffered of moderate to severe COVID-19 syndrome had higher values of GA than those infected and presenting with mild symptoms or those with asymptomatic infection. Premature delivery and infants of a small size for their gestational age were overrepresented in this cohort, even in mild-asymptomatic patients for whom delivery was not indicated by the COVID-19 syndrome. Moreover, ethnic minorities were overrepresented among the severe cases. The AGE-RAGE oxidative stress axis on the placenta and multiple organs caused by MGO and GA levels, associated with the biological mechanisms of the glycation of the SARS-CoV-2 spike protein, could help to explain the infectivity and virulence of this virus in pregnant patients affected by being overweight or obese or having gestational diabetes, and the increased risk of premature delivery and/or low newborn weight.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , COVID-19/pathology , Female , Glucose , Glycosylation , Humans , Infant, Newborn , Inflammation , Obesity , Overweight , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , Pregnancy Outcome , Pregnant Women , Pyruvaldehyde , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
J Neurol Neurosurg Psychiatry ; 93(12): 1343-1348, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2038335

ABSTRACT

BACKGROUND: To assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement. METHODS: In this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs). RESULTS: Age and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04-1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98-1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72-1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02-2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94-2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64-2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008). CONCLUSION: The results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.


Subject(s)
Brain , COVID-19 , Neuroglia , Neurons , Humans , Biomarkers/blood , Brain/pathology , Brain/virology , COVID-19/mortality , COVID-19/pathology , Neurofilament Proteins/blood , Neuroglia/pathology , Neuroglia/virology , Neurons/pathology , Neurons/virology , Prospective Studies , SARS-CoV-2 , Male , Female , Prognosis
10.
Hum Genomics ; 16(1): 33, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2021342

ABSTRACT

BACKGROUND: The tripartite motif containing (TRIM)-22 participates in innate immune responses and exhibits antiviral activities. The present study aimed to assess of the relationship between TRIM22 single-nucleotide polymorphisms and clinical parameters with the coronavirus disease 2019 (COVID-19) infection severity. METHODS: TRIM22 polymorphisms (rs7113258, rs7935564, and rs1063303) were genotyped using TaqMan polymerase chain reaction (PCR) assay in 495 dead and 497 improved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients. RESULTS: In this study, the frequencies of TRIM22 rs1063303 GG, rs7935564 GG, and rs7113258 TT were significantly higher in dead patients than in improved patients, and higher viral load with low PCR Ct value was noticed in dead patients. The multivariate logistic regression analysis revealed that the lower levels of low-density lipoprotein (LDL), cholesterol, PCR Ct value, and lower 25-hydroxyvitamin D, and also higher levels of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and TRIM22 rs1063303 GG, rs7113258 TT, and rs3824949 GG genotypes were related to the COVID-19 infection severity. CONCLUSION: Our finding proved the probable relationship between the COVID-19 infection severity with the genotypes of TRIM22 SNPs and clinical parameters. More research is required worldwide to show the association between the COVID-19 infection severity and host genetic factors.


Subject(s)
COVID-19 , Minor Histocompatibility Antigens , Polymorphism, Single Nucleotide , Repressor Proteins , Tripartite Motif Proteins , Humans , COVID-19/genetics , COVID-19/pathology , Minor Histocompatibility Antigens/genetics , Repressor Proteins/genetics , SARS-CoV-2 , Tripartite Motif Proteins/genetics
11.
Nature ; 611(7934): 139-147, 2022 11.
Article in English | MEDLINE | ID: covidwho-2016757

ABSTRACT

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Subject(s)
Autoantibodies , B-Lymphocytes , COVID-19 , Humans , Autoantibodies/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Immunoglobulin G/immunology , Single-Cell Analysis , Autoantigens/immunology , Basement Membrane/immunology
13.
Sci Rep ; 12(1): 4058, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004786

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key host protein by which severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters and multiplies within cells. The level of ACE2 expression in the lung is hypothesised to correlate with an increased risk of severe infection and complications in COrona VIrus Disease 2019 (COVID-19). To test this hypothesis, we compared the protein expression status of ACE2 by immunohistochemistry (IHC) in post-mortem lung samples of patients who died of severe COVID-19 and lung samples obtained from non-COVID-19 patients for other indications. IHC for CD61 and CD163 was performed for the assessment of platelet-rich microthrombi and macrophages, respectively. IHC for SARS-CoV-2 viral antigen was also performed. In a total of 55, 44 COVID-19 post-mortem lung samples were tested for ACE2, 36 for CD163, and 26 for CD61, compared to 15 non-covid 19 control lung sections. Quantification of immunostaining, random sampling, and correlation analysis were used to substantiate the morphologic findings. Our results show that ACE2 protein expression was significantly higher in COVID-19 post-mortem lung tissues than in controls, regardless of sample size. Histomorphology in COVID-19 lungs showed diffuse alveolar damage (DAD), acute bronchopneumonia, and acute lung injury with SARS-CoV-2 viral protein detected in a subset of cases. ACE2 expression levels were positively correlated with increased expression levels of CD61 and CD163. In conclusion, our results show significantly higher ACE2 protein expression in severe COVID-19 disease, correlating with increased macrophage infiltration and microthrombi, suggesting a pathobiological role in disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Acute Lung Injury/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Autopsy , COVID-19/virology , Case-Control Studies , Female , Humans , Immunohistochemistry , Integrin beta3/genetics , Integrin beta3/metabolism , Lung/pathology , Male , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
14.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1997031

ABSTRACT

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Subject(s)
COVID-19 , Lung , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , Fluoxetine/pharmacology , Humans , Influenza A virus/physiology , Influenza, Human/pathology , Interferons , Lung/virology , Mice , Orthomyxoviridae Infections/pathology , SARS-CoV-2/physiology , Tissue Culture Techniques , Virus Replication
15.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1991765

ABSTRACT

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Subject(s)
Brain , COVID-19 , Central Nervous System Viral Diseases , SARS-CoV-2 , Astrocytes/pathology , Astrocytes/virology , Brain/pathology , Brain/virology , COVID-19/complications , COVID-19/pathology , Central Nervous System Viral Diseases/etiology , Central Nervous System Viral Diseases/pathology , Humans
16.
J Virol ; 96(17): e0096722, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1986331

ABSTRACT

Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of ß-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1ß signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and ß-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of ß-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.


Subject(s)
COVID-19 , Doublecortin-Like Kinases , COVID-19/metabolism , COVID-19/pathology , Calgranulin B/metabolism , Chemokines/metabolism , Cytokines/metabolism , Doublecortin-Like Kinases/antagonists & inhibitors , Doublecortin-Like Kinases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukocytes, Mononuclear/metabolism , Quinolones/pharmacology , SARS-CoV-2 , beta Catenin/metabolism
17.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1984990

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
19.
J Immunol Res ; 2022: 9764002, 2022.
Article in English | MEDLINE | ID: covidwho-1973966

ABSTRACT

COVID-19 has several mechanisms that can lead to lymphocyte depletion/exhaustion. The checkpoint inhibitor molecule programmed death protein 1 (PD-1) and its programmed death-ligand 1 (PDL-1) play an important role in inhibiting cellular activity as well as the depletion of these cells. In this study, we evaluated PD-1 expression in TCD4+, TCD8+, and CD19+ lymphocytes from SARS-CoV-2-infected patients. A decreased frequency of total lymphocytes and an increased PD-1 expression in TCD4+ and CD19+ lymphocytes were verified in severe/critical COVID-19 patients. In addition, we found a decreased frequency of total monocytes with an increased PD-1 expression on CD14+ monocytes in severe/critical patients in association with the time of infection. Moreover, we observed an increase in sPD-L1 circulant levels associated with the severity of the disease. Overall, these data indicate an important role of the PD-1/PDL-1 axis in COVID-19 and may provide a severity-associated biomarker and therapeutic target during SARS-CoV-2 infection.


Subject(s)
B7-H1 Antigen , COVID-19 , Programmed Cell Death 1 Receptor , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , COVID-19/diagnosis , COVID-19/pathology , Humans , Monocytes/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2 , Up-Regulation
20.
Viruses ; 14(8)2022 07 30.
Article in English | MEDLINE | ID: covidwho-1969507

ABSTRACT

The coronavirus 2019 (COVID-19) disease has long-term effects, known as post-COVID conditions (PCC) or long-COVID. Post-COVID-19 syndrome is defined by signs and symptoms that occur during or after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which persist for more than 12 weeks and cannot be supported by an alternative diagnosis. The cardiovascular damage caused by COVID-19 in the severe forms of the disease is induced by severe systemic inflammation, considered to be one of the causes of myocardial lesions, with increased levels of circulating cytokines and toxic response mediators. We have focused on conditions that can induce long-COVID-19, or multisystem inflammatory syndrome in adults or children (MIS-C/MIS-A), with an emphasis on endocrinological and metabolic disorders. Although described less frequently in children than in adults, long-COVID syndrome should not be confused with MIS-C, which is an acute condition characterized by multisystem involvement and paraclinical evidence of inflammation in a pediatric patient who tested positive for SARS-CoV-2. At the same time, we mention that the MIS-A symptoms remit within a few weeks, while the duration of long-COVID is measured in months. Long-COVID syndrome, along with its complications, MIS-A and MIS-C, represents an important challenge in the medical community. Underlying comorbidities can expose both COVID-19 adult and pediatric patients to a higher risk of negative outcomes not only during, but in the aftermath of the SARS-CoV-2 infection as well.


Subject(s)
COVID-19 , Adult , COVID-19/complications , COVID-19/pathology , Child , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL