Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 10.037
Filter
2.
Curr Opin Allergy Clin Immunol ; 21(6): 535-544, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-2161182

ABSTRACT

PURPOSE OF REVIEW: In the general population, the risk of severe COVID-19 is associated with old age, male sex, hypertension, obesity and chronic diseases. Chronic lung diseases are listed as additional risk factors for hospitalization and ICU admission. The purpose of this review is to define whether chronic lung diseases, such as bronchiectasis and interstitial diseases, represent a risk for a severe SARS-CoV-2 infection in patients affected by common variable immunodeficiency (CVID), the most common symptomatic primary antibody defect. RECENT FINDINGS: CVID patients with SARS-CoV-2 infection have been reported since the beginning of the pandemic with a wide range of clinical presentations ranging from asymptomatic to mild/moderate and severe COVID-19. The meta-analysis of 88 CVID cases described in large cohorts and case reports demonstrated that CVID patients with chronic lung involvement have an increased risk for severe COVID-19 in comparison to CVID without lung diseases (50 vs. 28%, relative risk 1.75, 95% confidence interval 1.04--2.92, P = 0.043). Differently from the general population, age and metabolic comorbidities did not represent a risk factor for severe course in this patient's population. SUMMARY: Underlying chronic lung diseases but not age represent a risk factor for severe COVID-19 in CVID. Prompt therapeutic intervention should be adopted in SARS-CoV-2 positive CVID patients with chronic lung diseases independently of their age.


Subject(s)
Bronchiectasis/epidemiology , COVID-19/diagnosis , Common Variable Immunodeficiency/complications , Lung Diseases, Interstitial/epidemiology , Severity of Illness Index , Age Factors , Bronchiectasis/immunology , COVID-19/immunology , COVID-19/virology , Chronic Disease/epidemiology , Common Variable Immunodeficiency/immunology , Disease Susceptibility , Humans , Lung Diseases, Interstitial/immunology , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
3.
Lab Med ; 52(5): e137-e146, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-2135433

ABSTRACT

OBJECTIVE: To describe a cross-institutional approach to verify the Abbott ARCHITECT SARS-CoV-2 antibody assay and to document the kinetics of the serological response. METHODS: We conducted analytical performance evaluation studies using the Abbott ARCHITECT SARS-CoV-2 antibody assay on 5 Abbott ARCHITECT i2000 automated analyzers at 2 academic medical centers. RESULTS: Within-run and between-run coefficients of variance (CVs) for the antibody assay did not exceed 5.6% and 8.6%, respectively, for each institution. Quantitative and qualitative results agreed for lithium heparin plasma, EDTA-plasma and serum specimen types. Results for all SARS-CoV-2 IgG-positive and -negative specimens were concordant among analyzers except for 1 specimen at 1 institution. Qualitative and quantitative agreement was observed for specimens exchanged between institutions. All patients had detectable antibodies by day 10 from symptom onset and maintained seropositivity throughout specimen procurement. CONCLUSIONS: The analytical performance characteristics of the Abbott ARCHITECT SARS-CoV-2 antibody assay within and between 2 academic medical center clinical laboratories were acceptable for widespread clinical-laboratory use.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/standards , COVID-19/diagnosis , Immunoassay/standards , Immunoglobulin G/blood , SARS-CoV-2/immunology , Academic Medical Centers , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Humans , Observer Variation , Reproducibility of Results , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Virginia
4.
Front Immunol ; 13: 962079, 2022.
Article in English | MEDLINE | ID: covidwho-2114642

ABSTRACT

Despite the efficacy of antiviral drug repositioning, convalescent plasma (CP), and the currently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the worldwide coronavirus disease 2019 (COVID-19) pandemic is still challenging because of the ongoing emergence of certain new SARS-CoV-2 strains known as variants of concern (VOCs). Mutations occurring within the viral genome, characterized by these new emerging VOCs, confer on them the ability to efficiently resist and escape natural and vaccine-induced humoral and cellular immune responses. Consequently, these VOCs have enhanced infectivity, increasing their stable spread in a given population with an important fatality rate. While the humoral immune escape process is well documented, the evasion mechanisms of VOCs from cellular immunity are not well elaborated. In this review, we discussed how SARS-CoV-2 VOCs adapt inside host cells and escape anti-COVID-19 cellular immunity, focusing on the effect of specific SARS-CoV-2 mutations in hampering the activation of CD8+ T-cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics
5.
JBJS Case Connect ; 11(1)2021 03 19.
Article in English | MEDLINE | ID: covidwho-2115210

ABSTRACT

CASE: We describe a preliminary report of 3 cases of ulnar neuropathy after coronavirus disease 2019 (COVID-19) infection and treatment with intermittent prone positioning. CONCLUSION: Ulnar neuropathy may be associated with recent COVID-19 infection. The natural process of the disease and intermittent prone positioning are likely risk factors contributing to this finding. Conservative management seems to lead to improvement of symptoms.


Subject(s)
COVID-19/therapy , Intubation, Intratracheal/adverse effects , Patient Positioning/adverse effects , Prone Position , Ulnar Neuropathies/etiology , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2
6.
Chem Pharm Bull (Tokyo) ; 69(12): 1141-1159, 2021.
Article in English | MEDLINE | ID: covidwho-2115208

ABSTRACT

Considerable efforts have been made on the development of lipid nanoparticles (LNPs) for delivering of nucleic acids in LNP-based medicines, including a first-ever short interfering RNA (siRNA) medicine, Onpattro, and the mRNA vaccines against the coronavirus disease 2019 (COVID-19), which have been approved and are currently in use worldwide. The successful rational design of ionizable cationic lipids was a major breakthrough that dramatically increased delivery efficiency in this field. The LNPs would be expected to be useful as a platform technology for the delivery of various therapeutic modalities for genome editing and even for undiscovered therapeutic mechanisms. In this review, the current progress of my research, including the molecular design of pH-sensitive cationic lipids, their applications for various tissues and cell types, and for delivering various macromolecules, including siRNA, antisense oligonucleotide, mRNA, and the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system will be described. Mechanistic studies regarding relationships between the physicochemical properties of LNPs, drug delivery, and biosafety are also summarized. Furthermore, current issues that need to be addressed for next generation drug delivery systems are discussed.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Cations/chemistry , Hydrogen-Ion Concentration , RNA, Guide/chemistry , RNA, Guide/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , SARS-CoV-2/isolation & purification , /metabolism
7.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-2114170

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage
8.
Int J Infect Dis ; 111: 47-54, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113756

ABSTRACT

OBJECTIVES: To evaluate changes in the characteristics of patients with coronavirus disease 2019 (COVID-19) after the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) P.1 (Gamma), by comparing the clinical, demographic, and laboratory profiles of patients hospitalized during the first (May to July 2020) and second (December 2020 to February 2021) pandemic waves. METHODS: Data were collected from the records of COVID-19 patients (n = 4164) admitted to a single hospital in Salvador, Northeast Brazil. SARS-CoV-2 genome sequencing was performed on nasopharyngeal swab samples from 12 patients aged <60 years admitted to the intensive care unit (ICU) in February 2021. RESULTS: Between June 2020 and February 2021, the median age of patients admitted to the ICU decreased from 66 to 58 years (P < 0.05). This was accompanied by an increased proportion of patients without comorbidities (15.32% vs 32.20%, P < 0.0001). A significant reduction in the cycle threshold values of SARS-CoV-2 RT-PCR tests was observed in the second wave (P < 0.0001). Sequencing analysis detected lineage Gamma in all 12 ICU patients sampled in February 2021. CONCLUSIONS: The results of this study demonstrated an increased proportion of younger adults without comorbidities with severe disease during the second COVID-19 wave, shortly after the confirmation of local Gamma circulation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Hospitals , Humans , Intensive Care Units , Middle Aged
9.
Int J Infect Dis ; 111: 347-353, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113590

ABSTRACT

AIMS: To explore the contagiousness and new SARS-CoV-2 mutations in pediatric COVID-19. METHODS: This cohort study enrolled all pediatric patients admitted to 8 hospitals in Zhejiang Province of China between 21 January and 29 February 2020, their family members and close-contact classmates. Epidemiological, demographic, clinical and laboratory data were collected. Bioinformatics was used to analyze the features of SARS-CoV-2. Individuals were divided into 3 groups by the first-generation case: Groups 1 (unclear), 2 (adult), and 3 (child). The secondary attack rate (SAR) and R0 were compared among the groups. RESULTS: The infection rate among 211 individuals was 64% (135/211). The SAR in Groups 2 and 3 was 71% (73/103) and 3% (1/30), respectively; the median R0 in Groups 2 and 3 was 2 (range: 1-8) and 0 (range: 0-1), respectively. Compared with adult cases, the SAR and R0 of pediatric cases were significantly lower (p<0.05). We obtained SARS-CoV-2 sequences from the same infant's throat and fecal samples at a two-month interval and found that the new spike protein A958D mutation detected in the stool improved thermostability theoretically. CONCLUSIONS: Children have lower ability to spread SARS-CoV-2. The new A958D mutation is a potential reason for its long residence in the intestine.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Adult , COVID-19/virology , Child , China/epidemiology , Cohort Studies , Humans , Incidence , Infant , Mutation , SARS-CoV-2/genetics
10.
Cell Rep ; 39(13): 110989, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-2121651

ABSTRACT

The interleukin-12 (IL-12) family comprises the only heterodimeric cytokines mediating diverse functional effects. We previously reported a striking bimodal IL-12p70 response to lipopolysaccharide (LPS) stimulation in healthy donors. Herein, we demonstrate that interferon ß (IFNß) is a major upstream determinant of IL-12p70 production, which is also associated with numbers and activation of circulating monocytes. Integrative modeling of proteomic, genetic, epigenomic, and cellular data confirms IFNß as key for LPS-induced IL-12p70 and allowed us to compare the relative effects of each of these parameters on variable cytokine responses. Clinical relevance of our findings is supported by reduced IFNß-IL-12p70 responses in patients hospitalized with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or chronically infected with hepatitis C (HCV). Importantly, these responses are resolved after viral clearance. Our systems immunology approach defines a better understanding of IL-12p70 and IFNß in healthy and infected persons, providing insights into how common genetic and epigenetic variation may impact immune responses to bacterial infection.


Subject(s)
Interferon-beta , Interleukin-12 , Toll-Like Receptor 4 , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Interferon-beta/immunology , Interferon-beta/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Lipopolysaccharides/pharmacology , Proteomics , SARS-CoV-2/immunology
11.
PLoS Comput Biol ; 17(2): e1008618, 2021 02.
Article in English | MEDLINE | ID: covidwho-2109274

ABSTRACT

For practical reasons, many forecasts of case, hospitalization, and death counts in the context of the current Coronavirus Disease 2019 (COVID-19) pandemic are issued in the form of central predictive intervals at various levels. This is also the case for the forecasts collected in the COVID-19 Forecast Hub (https://covid19forecasthub.org/). Forecast evaluation metrics like the logarithmic score, which has been applied in several infectious disease forecasting challenges, are then not available as they require full predictive distributions. This article provides an overview of how established methods for the evaluation of quantile and interval forecasts can be applied to epidemic forecasts in this format. Specifically, we discuss the computation and interpretation of the weighted interval score, which is a proper score that approximates the continuous ranked probability score. It can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness and penalties for over- and underprediction.


Subject(s)
COVID-19/epidemiology , Communicable Diseases/epidemiology , Pandemics , COVID-19/virology , Forecasting , Humans , Probability , SARS-CoV-2/isolation & purification
12.
Nature ; 611(7936): 570-577, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106425

ABSTRACT

Expanding our global testing capacity is critical to preventing and containing pandemics1-9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10-14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15-20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21-29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents ('ferrobots') for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10-300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future.


Subject(s)
Automation , COVID-19 Testing , Magnets , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Robotics , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing/methods , Molecular Diagnostic Techniques/economics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/methods , Pandemics/prevention & control , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Algorithms , Automation/economics , Automation/methods , Robotics/methods , Indicators and Reagents/economics
15.
Jpn J Infect Dis ; 75(4): 411-414, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-2100391

ABSTRACT

The World Health Organization designated Omicron (B.1.1.529 lineage) of SARS-CoV-2 as a new variant of concern on November 26, 2021. The risk to public health conferred by the Omicron variant is still not completely clear, although its numerous gene mutations have raised concerns regarding its potential for increased transmissibility and immune escape. In this study, we describe the development of two single-nucleotide polymorphism genotyping assays targeting the G339D or T547K mutations of the spike protein to screen for the Omicron variant. A specificity test revealed that the two assays successfully discriminated the Omicron variant from the Delta and Alpha variants, each with a single nucleotide mismatch. In addition, a sensitivity test showed that the G339D and T547K assays detected at least 2.60 and 3.36 RNA copies of the Omicron variant, respectively, and 1.59 RNA copies of the Delta variant. These results demonstrate that both assays could be useful for detecting and discriminating the Omicron variant from other strains. In addition, because of the rapid and unpredictable evolution of SARS-CoV-2, combining our assays with previously developed assays for detecting other mutations may lead to a more accurate diagnostic system.


Subject(s)
COVID-19 , Genotyping Techniques , Humans , COVID-19/diagnosis , COVID-19/virology , Genotype , RNA , RNA, Viral/genetics , Polymorphism, Single Nucleotide
16.
Viruses ; 14(11)2022 Nov 06.
Article in English | MEDLINE | ID: covidwho-2099866

ABSTRACT

New variants of SARS-CoV-2 continue to evolve. The novel SARS-CoV-2 variant of concern (VOC) B.1.1.529 (Omicron) was particularly menacing due to the presence of numerous consequential mutations. In this study, we reviewed about 12 million SARS-CoV-2 genomic and associated metadata using extensive bioinformatic approaches to understand how evolutionary and mutational changes affect Omicron variant properties. Subsampled global data based analysis of molecular clock in the phylogenetic tree showed 29.56 substitutions per year as the evolutionary rate of five VOCs. We observed extensive mutational changes in the spike structural protein of the Omicron variant. A total of 20% of 7230 amino acid and structural changes exclusive to Omicron's spike protein were detected in the receptor binding domain (RBD), suggesting differential selection pressures exerted during evolution. Analyzing key drug targets revealed mutation-derived differential binding affinities between Delta and Omicron variants. Nine single-RBD substitutions were detected within the binding site of approved therapeutic monoclonal antibodies. T-cell epitope prediction revealed eight immunologically important functional hotspots in three conserved non-structural proteins. A universal vaccine based on these regions may likely protect against all these SARS-CoV-2 variants. We observed key structural changes in the spike protein, which decreased binding affinities, indicating that these changes may help the virus escape host cellular immunity. These findings emphasize the need for continuous genomic surveillance of SARS-CoV-2 to better understand how novel mutations may impact viral spread and disease outcome.


Subject(s)
Antiviral Agents , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Mutation , Phylogeny , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
17.
Global Health ; 17(1): 93, 2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-2098356

ABSTRACT

International air travel has been highlighted as a concern since the beginning of the COVID-19 pandemic with respect to importation of cases. We summarise the available evidence for in-flight transmission of wild type SARS-CoV-2 during 2020, and for imported COVID-19 clusters to cause outbreaks. This paper provides a data baseline prior to the emergence of new mutations causing SARS-CoV-2 variants of concern, whose characteristics may increase the potential risk of in-flight transmission and imported outbreaks. The evidence on in-flight transmission of wild-type SARS-CoV-2 is limited, and is described in a small number of published reports. Most of the available evidence pertains to the early phase of the COVID-19 pandemic, during a period without non-pharmaceutical interventions such as distancing and in-flight mask wearing. There is considerable potential for outbreaks of COVID-19 from imported cases or clusters when public health guidance around quarantine of travellers and self-isolation of cases is not adhered to. Risks can be mitigated by measures such as: avoiding non-essential travel, targeted testing and quarantine of travellers from high incidence regions or regions of concern, managed quarantine processes, and protocols for rapid investigation and control of transmission from a possible variant of concern. Measures should be dynamically assessed and proportionate to the level of risk.


Subject(s)
Air Travel , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Imported/epidemiology , Disease Outbreaks , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics
19.
Biochemistry ; 61(22): 2495-2505, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2096611

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and has been the focus of many drug discovery efforts since the start of the COVID-19 pandemic. Nirmatrelvir (NTV) is an inhibitor of SARS-CoV-2 Mpro that is used in the combination drug Paxlovid for the treatment of mild to moderate COVID-19. However, with increased use of NTV across the globe, there is a possibility that future SARS-CoV-2 lineages will evolve resistance to NTV. Early prediction and monitoring of resistance mutations could allow for measures to slow the spread of resistance and for the development of new compounds with activity against resistant strains. In this work, we have used in silico mutational scanning and inhibitor docking of Mpro to identify potential resistance mutations. Subsequent in vitro experiments revealed five mutations (N142L, E166M, Q189E, Q189I, and Q192T) that reduce the potency of NTV and of a previously identified non-covalent cyclic peptide inhibitor of Mpro. The E166M mutation reduced the half-maximal inhibitory concentration (IC50) of NTV 24-fold and 118-fold for the non-covalent peptide inhibitor. Our findings inform the ongoing genomic surveillance of emerging SARS-CoV-2 lineages.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , Drug Resistance, Viral , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/virology , Molecular Docking Simulation , Mutation , Pandemics , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Drug Resistance, Viral/genetics , Coronavirus 3C Proteases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL