Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Monoclon Antib Immunodiagn Immunother ; 41(5): 229-230, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2097269
2.
Emerg Infect Dis ; 28(11): 2352-2355, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2054901

ABSTRACT

We assessed cross-reactivity to BA.1, BA.2, and BA.5 of neutralizing antibodies elicited by ancestral, Delta, and Omicron BA.1 SARS-CoV-2 infection in mice. Primary infection elicited homologous antibodies with poor cross-reactivity to Omicron strains. This pattern remained after BA.1 challenge, although ancestral- and Delta-infected mice were protected from BA.1 infection.


Subject(s)
COVID-19 , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins , Cross Reactions
3.
Sci Immunol ; 7(73): eabq3511, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-2038228

ABSTRACT

Understanding immune responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection will facilitate the development of next-generation vaccines. Here, we profiled spike (S)-specific B cell responses after Omicron/BA.1 infection in messenger RNA-vaccinated donors. The acute antibody response was characterized by high levels of somatic hypermutation and a bias toward recognition of ancestral SARS-CoV-2 strains, suggesting the early activation of vaccine-induced memory B cells. BA.1 breakthrough infection induced a shift in B cell immunodominance hierarchy from the S2 subunit, which is highly conserved across SARS-CoV-2 variants of concern (VOCs), and toward the antigenically variable receptor binding domain (RBD). A large proportion of RBD-directed neutralizing antibodies isolated from BA.1 breakthrough infection donors displayed convergent sequence features and broadly recognized SARS-CoV-2 VOCs. Together, these findings provide insights into the role of preexisting immunity in shaping the B cell response to heterologous SARS-CoV-2 variant exposure.


Subject(s)
B-Lymphocytes , COVID-19 , Immunologic Memory , Antibodies, Viral , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cross Reactions , Humans , Membrane Glycoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
4.
Nat Immunol ; 23(9): 1307-1308, 2022 09.
Article in English | MEDLINE | ID: covidwho-2016770
5.
Nat Immunol ; 23(9): 1324-1329, 2022 09.
Article in English | MEDLINE | ID: covidwho-2016769

ABSTRACT

T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections such as SARS-CoV-2, helping to provide long-lived protection against disease. Recent studies have suggested an additional role for T cells in resisting overt infection: pre-existing cross-reactive responses were preferentially enriched in healthcare workers who had abortive infections1, and in household contacts protected from infection2. We hypothesize that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection; such airway-resident responses have been shown to be critical for mediating protection after intranasal vaccination in a murine model of SARS-CoV3. Bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained before the COVID-19 pandemic revealed airway-resident, SARS-CoV-2-cross-reactive T cells, which correlated with the strength of human seasonal coronavirus immunity. We therefore demonstrate the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Cross Reactions , Humans , Mice , Pandemics , Respiratory System
6.
Viruses ; 14(7)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-2002547

ABSTRACT

Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs-host interaction, which may provide a scientific basis for disease prevention and control.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Animals , Circovirus/genetics , Cross Reactions , Swine
7.
J Virol ; 96(15): e0055822, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1962090

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Subject(s)
Antibodies, Viral , Cross Reactions , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cross Reactions/immunology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
J Med Virol ; 94(10): 4820-4829, 2022 10.
Article in English | MEDLINE | ID: covidwho-1941180

ABSTRACT

The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Antibodies, Viral , Cross Reactions , Humans , Pandemics , SARS-CoV-2 , Seasons , Spike Glycoprotein, Coronavirus
9.
Viruses ; 14(7)2022 07 12.
Article in English | MEDLINE | ID: covidwho-1939012

ABSTRACT

Pre-existing antibodies that bind endemic human coronaviruses (eHCoVs) can cross-react with SARS-CoV-2, which is the betacoronavirus that causes COVID-19, but whether these responses influence SARS-CoV-2 infection is still under investigation and is particularly understudied in infants. In this study, we measured eHCoV and SARS-CoV-1 IgG antibody titers before and after SARS-CoV-2 seroconversion in a cohort of Kenyan women and their infants. Pre-existing eHCoV antibody binding titers were not consistently associated with SARS-CoV-2 seroconversion in infants or mothers; however, we observed a very modest association between pre-existing HCoV-229E antibody levels and a lack of SARS-CoV-2 seroconversion in the infants. After seroconversion to SARS-CoV-2, antibody binding titers to the endemic betacoronaviruses HCoV-OC43 and HCoV-HKU1, and the highly pathogenic betacoronavirus SARS-CoV-1, but not the endemic alphacoronaviruses HCoV-229E and HCoV-NL63, increased in the mothers. However, eHCoV antibody levels did not increase following SARS-CoV-2 seroconversion in the infants, suggesting the increase seen in the mothers was not simply due to cross-reactivity to naively generated SARS-CoV-2 antibodies. In contrast, the levels of antibodies that could bind SARS-CoV-1 increased after SARS-CoV-2 seroconversion in both the mothers and infants, both of whom were unlikely to have had a prior SARS-CoV-1 infection, supporting prior findings that SARS-CoV-2 responses cross-react with SARS-CoV-1. In summary, we found evidence of increased eHCoV antibody levels following SARS-CoV-2 seroconversion in the mothers but not the infants, suggesting eHCoV responses can be boosted by SARS-CoV-2 infection when a prior memory response has been established, and that pre-existing cross-reactive antibodies are not strongly associated with SARS-CoV-2 infection risk in mothers or infants.


Subject(s)
Antibody Formation , COVID-19 , Coronavirus 229E, Human , Coronavirus Infections , Coronavirus OC43, Human , Antibodies, Viral , COVID-19/epidemiology , Coronavirus Infections/immunology , Cross Reactions , Female , Humans , Infant , Kenya/epidemiology , SARS-CoV-2
10.
Med (N Y) ; 3(6): 406-421.e4, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1926779

ABSTRACT

BACKGROUND: The Omicron variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was identified in Japan in November 2021. This variant contains up to 36 mutations in the spike protein, the target of neutralizing antibodies, and can escape vaccine-induced immunity. A booster vaccination campaign began with healthcare workers and high-risk groups. The safety and immunogenicity of the three-dose vaccination against Omicron remain unknown. METHODS: A total of 272 healthcare workers were initially evaluated for long-term vaccine safety and immunogenicity. We further established a vaccinee panel to evaluate the safety and immunogenicity against variants of concern (VOCs), including the Omicron variants, using a live virus microneutralization assay. FINDINGS: Two-dose vaccination induced robust anti-spike antibodies and neutralization titers (NTs) against the ancestral strain WK-521, whereas NTs against VOCs were significantly lower. Within 93-247 days of the second vaccine dose, NTs against Omicron were completely abolished in up to 80% of individuals in the vaccinee panel. Booster dose induced a robust increase in anti-spike antibodies and NTs against the WK-521, Delta, and Omicron variants. There were no significant differences in the neutralization ability of sera from boosted individuals among the Omicron subvariants BA.1, BA.1.1, and BA.2. Boosting increased the breadth of humoral immunity and cross-reactivity with Omicron without changes in cytokine signatures and adverse event rate. CONCLUSIONS: The third vaccination dose is safe and increases neutralization against Omicron variants. FUNDING: This study was supported by grants from AMED (grants JP21fk0108104 and JP21mk0102146).


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , Antibodies, Neutralizing , BNT162 Vaccine/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Immunity, Humoral , Neutralization Tests , RNA, Messenger , SARS-CoV-2/genetics
11.
Sci Rep ; 12(1): 11388, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1921711

ABSTRACT

The emergence of the novel SARS-CoV-2 virus is the most important public-health issue of our time. Understanding the diverse clinical presentations of the ensuing disease, COVID-19, remains a critical unmet need. Here we present a comprehensive listing of the diverse clinical indications associated with COVID-19. We explore the theory that anti-SARS-CoV-2 antibodies could cross-react with endogenous human proteins driving some of the pathologies associated with COVID-19. We describe a novel computational approach to estimate structural homology between SARS-CoV-2 proteins and human proteins. Antibodies are more likely to interrogate 3D-structural epitopes than continuous linear epitopes. This computational workflow identified 346 human proteins containing a domain with high structural homology to a SARS-CoV-2 Wuhan strain protein. Of these, 102 proteins exhibit functions that could contribute to COVID-19 clinical pathologies. We present a testable hypothesis to delineate unexplained clinical observations vis-à-vis COVID-19 and a tool to evaluate the safety-risk profile of potential COVID-19 therapies.


Subject(s)
Antibody Formation , COVID-19 , Cross Reactions , Epitopes , Humans , SARS-CoV-2
12.
PLoS One ; 17(2): e0253638, 2022.
Article in English | MEDLINE | ID: covidwho-1910476

ABSTRACT

Population immunity (herd immunity) to SARS-CoV-2 derives from two sources: vaccinations or cases of infection with the virus. Infections can be diagnosed as COVID-19 and registered, or they can be asymptomatic, oligosymptomatic, or even full-blown but undiagnosed and unregistered when patients recovered at home. Estimation of population immunity to SARS-CoV-2 is difficult and remains a subject of speculations. Here we present a population screening for SARS-CoV-2 specific IgG and IgA antibodies in Polish citizens (N = 501) who had never been positively diagnosed with or vaccinated against SARS-CoV-2. Serum samples were collected in Wroclaw (Lower Silesia) on 15th and 22nd May 2021. Sera from hospitalized COVID-19 patients (N = 22) or from vaccinated citizens (N = 14) served as positive controls. Sera were tested with Microblot-Array COVID-19 IgG and IgA (quantitative) that contain specific SARS-CoV-2 antigens: NCP, RBD, Spike S2, E, ACE2, PLPro protein, and antigens for exclusion cross-reactivity with other coronaviruses: MERS-CoV, SARS-CoV, HCoV 229E Np, HCoV NL63 Np. Within the investigated population of healthy individuals who had never been positively diagnosed with or vaccinated against SARS-CoV-2, we found that 35.5% (178 out of 501) were positive for SARS-CoV-2-specific IgG and 52.3% (262 out of 501) were positive for SARS-CoV-2-specific IgA; 21.2% of the investigated population developed virus-specific IgG or IgA while being asymptomatic. Anti-RBD IgG, which represents virus-neutralizing potential, was found in 25.6% of individuals (128 out of 501). These patients, though positive for anti-SARS-CoV-2 antibodies, cannot be identified in the public health system as convalescents due to undiagnosed infections, and they are considered unaffected by SARS-CoV-2. Their contribution to population immunity against COVID-19 should however be considered in predictions and modeling of the COVID-19 pandemic. Of note, the majority of the investigated population still lacked anti-RBD IgG protection (74.4%); thus vaccination against COVID-19 is still of the most importance for controlling the pandemic.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , Immunity, Herd , Pandemics/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Adolescent , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/prevention & control , Cross Reactions , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Poland/epidemiology , Treatment Outcome , Young Adult
13.
Viruses ; 14(5)2022 04 21.
Article in English | MEDLINE | ID: covidwho-1879492

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially emerging variants, poses an increased threat to global public health. The significant reduction in neutralization activity against the variants such as B.1.351 in the serum of convalescent patients and vaccinated people calls for the design of new potent vaccines targeting the emerging variant. However, since most vaccines approved and in clinical trials are based on the sequence of the original SARS-CoV-2 strain, the immunogenicity and protective efficacy of vaccines based on the B.1.351 variant remain largely unknown. In this study, we evaluated the immunogenicity, induced neutralization activity, and protective efficacy of wild-type spike protein nanoparticle (S-2P) and mutant spike protein nanoparticle (S-4M-2P) carrying characteristic mutations of B.1.351 variant in mice. Although there was no significant difference in the induction of spike-specific IgG responses in S-2P- and S-4M-2P-immunized mice, neutralizing antibodies elicited by S-4M-2P exhibited noteworthy, narrower breadth of reactivity with SARS-CoV-2 variants compared with neutralizing antibodies elicited by S-2P. Furthermore, the decrease of induced neutralizing antibody breadth at least partly resulted from the amino acid substitution at position 484. Moreover, S-4M-2P vaccination conferred insufficient protection against live SARS-CoV-2 virus infection, while S-2P vaccination gave definite protection against SARS-CoV-2 challenge in mice. Together, our study provides direct evidence that the E484K substitution in a SARS-CoV-2 subunit protein vaccine limited the cross-reactive neutralizing antibody breadth in mice and, more importantly, draws attention to the unfavorable impact of this mutation in spike protein of SARS-CoV-2 variants on the induction of potent neutralizing antibody responses.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19 , Cross Reactions , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
15.
J Leukoc Biol ; 112(2): 339-346, 2022 08.
Article in English | MEDLINE | ID: covidwho-1772730

ABSTRACT

Multiple questions about SARS-CoV-2 humoral and cellular immunity remain unanswered. One key question is whether preexisting memory T or B cells, specific for related coronaviruses in SARS-CoV-2-unexposed individuals, can recognize and suppress COVID-19, but this issue remains unclear. Here, we demonstrate that antibody responses to SARS-CoV-2 antigens are restricted to serum samples from COVID-19 convalescent individuals. In contrast, cross-reactive T cell proliferation and IFN-γ production responses were detected in PBMCs of around 30% of donor samples collected prepandemic, although we found that these prepandemic T cell responses only elicited weak cTFH activation upon stimulation with either HCoV-OC43 or SARS-CoV-2 NP protein. Overall, these observations confirm that T cell cross-reactive with SARS-CoV-2 antigens are present in unexposed people, but suggest that the T cell response to HCoV-OC43 could be deficient in some important aspects, like TFH expansion, that might compromise the generation of cross-reactive TFH cells and antibodies. Understanding these differences in cellular responses may be of critical importance to advance in our knowledge of immunity against SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Viral , Cross Reactions , Humans , Immunity, Humoral , SARS-CoV-2
16.
J Virol ; 96(8): e0025022, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1769824

ABSTRACT

In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.


Subject(s)
Antibodies, Viral , Cats , Deer , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/veterinary , Cats/virology , Cross Reactions/immunology , Deer/virology , SARS Virus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses/diagnosis , Viral Zoonoses/virology
17.
J Infect Dis ; 226(3): 474-484, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1758749

ABSTRACT

BACKGROUND: A protective antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to decrease morbidity and mortality from severe coronavirus disease 2019 (COVID-19) disease. The effects of preexisting anti-human coronavirus (HCoV) antibodies on the SARS-CoV-2-specific immunoglobulin G (IgG) responses and severity of disease are currently unclear. METHODS: We profiled anti-spike (S), S1, S2, and receptor-binding domain IgG antibodies against SARS-CoV-2 and 6 HCoVs using a multiplex assay (mPLEX-CoV) with serum samples from SARS-CoV-2 infected (n = 155) and pre-COVID-19 (n = 188) cohorts. RESULTS: COVID-19 subjects showed significantly increased anti-S SARS-CoV-2 IgG levels that were highly correlated with IgG antibodies against OC43 and HKU1 S proteins. However, OC43 and HKU1 anti-S antibodies in pre-COVID-19 era sera did not cross-react with SARS-CoV-2. Unidirectional cross-reactive antibodies elicited by SARS-CoV-2 infection were distinct from the bidirectional cross-reactive antibodies recognizing homologous strains RaTG13 and SARS-CoV-1. High anti-OC43 and anti-S2 antibody levels were associated with both a rapid anti-SARS-CoV-2 antibody response and increased disease severity. Subjects with increased sequential organ failure assessment (SOFA) scores developed a higher ratio of S2- to S1-reactive antibodies. CONCLUSIONS: Early and rapid emergence of OC43 S- and S2-reactive IgG after SARS-CoV-2 infection correlates with COVID-19 disease severity.


Subject(s)
COVID-19 , Antibodies, Viral , Cross Reactions , Humans , Immunoglobulin G , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
18.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: covidwho-1742932

ABSTRACT

Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the ß-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Cross Reactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Specificity/immunology , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , Vaccination
19.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742485

ABSTRACT

The B and T lymphocytes of the adaptive immune system are important for the control of most viral infections, including COVID-19. Identification of epitopes recognized by these cells is fundamental for understanding how the immune system detects and removes pathogens, and for antiviral vaccine design. Intriguingly, several cross-reactive T lymphocyte epitopes from SARS-CoV-2 with other betacoronaviruses responsible for the common cold have been identified. In addition, antibodies that cross-recognize the spike protein, but not the nucleoprotein (N protein), from different betacoronavirus have also been reported. Using a consensus of eight bioinformatic methods for predicting B-cell epitopes and the collection of experimentally detected epitopes for SARS-CoV and SARS-CoV-2, we identified four surface-exposed, conserved, and hypothetical antigenic regions that are exclusive of the N protein. These regions were analyzed using ELISA assays with two cohorts: SARS-CoV-2 infected patients and pre-COVID-19 samples. Here we describe four epitopes from SARS-CoV-2 N protein that are recognized by the humoral response from multiple individuals infected with COVID-19, and are conserved in other human coronaviruses. Three of these linear surface-exposed sequences and their peptide homologs in SARS-CoV-2 and HCoV-OC43 were also recognized by antibodies from pre-COVID-19 serum samples, indicating cross-reactivity of antibodies against coronavirus N proteins. Different conserved human coronaviruses (HCoVs) cross-reactive B epitopes against SARS-CoV-2 N protein are detected in a significant fraction of individuals not exposed to this pandemic virus. These results have potential clinical implications.


Subject(s)
Coronavirus Nucleocapsid Proteins/immunology , Coronavirus OC43, Human/immunology , Cross Reactions/immunology , Epitope Mapping/methods , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Adult , Amino Acid Sequence , COVID-19/immunology , COVID-19/virology , Cohort Studies , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/physiology , Cross Reactions/genetics , Enzyme-Linked Immunosorbent Assay/methods , Epitopes, B-Lymphocyte/metabolism , HEK293 Cells , Health Personnel/statistics & numerical data , Humans , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
Front Immunol ; 13: 773652, 2022.
Article in English | MEDLINE | ID: covidwho-1742214

ABSTRACT

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity. Methods: Sera of patients infected with SARS-CoV-2 from March 2020 to January 2021 and admitted to Hyogo Prefectural Kakogawa Medical Center were selected. Blood was drawn from patients at 1-3, 3-6, and 6-8 months post onset. Then, a virus neutralization assay against SARS-CoV-2 variants (D614G mutation as conventional strain; B.1.1.7, P.1, and B.1.351 as VOCs) was performed using authentic viruses. Results: We assessed 97 sera from 42 patients. Sera from 28 patients showed neutralizing activity that was sustained for 3-8 months post onset. The neutralizing antibody titer against D614G significantly decreased in sera of 6-8 months post onset compared to those of 1-3 months post onset. However, the neutralizing antibody titers against the three VOCs were not significantly different among 1-3, 3-6, and 6-8 months post onset. Discussion: Our results indicate that neutralizing antibodies that recognize the common epitope for several variants may be maintained for a long time, while neutralizing antibodies having specific epitopes for a variant, produced in large quantities immediately after infection, may decrease quite rapidly.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Aged , Antibodies, Viral/blood , Broadly Neutralizing Antibodies , Cross Reactions , Female , Humans , Immunity, Humoral , Immunodominant Epitopes/immunology , Male , Middle Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL