Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.212
Filter
1.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2200315

ABSTRACT

Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.


Subject(s)
DNA, Z-Form , Interferon Type I , Nucleic Acids , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , NF-kappa B/metabolism , RNA , RNA-Binding Proteins/metabolism , Serine/genetics , Threonine/genetics
2.
Front Immunol ; 13: 888248, 2022.
Article in English | MEDLINE | ID: covidwho-2198814

ABSTRACT

Natural Killer (NK) cells are lymphocytes of the innate immunity that play a crucial role in the control of viral infections in the absence of a prior antigen sensitization. Indeed, they display rapid effector functions against target cells with the capability of direct cell killing and antibody-dependent cell-mediated cytotoxicity. Furthermore, NK cells are endowed with immune-modulatory functions innate and adaptive immune responses via the secretion of chemokines/cytokines and by undertaking synergic crosstalks with other innate immune cells, including monocyte/macrophages, dendritic cells and neutrophils. Recently, the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the specific role of NK cells in COVID-19 pathophysiology still need to be explored, mounting evidence indicates that NK cell tissue distribution and effector functions could be affected by SARS-CoV-2 infection and that a prompt NK cell response could determine a good clinical outcome in COVID-19 patients. In this review, we give a comprehensive overview of how SARS-CoV-2 infection interferes with NK cell antiviral effectiveness and their crosstalk with other innate immune cells. We also provide a detailed characterization of the specific NK cell subsets in relation to COVID-19 patient severity generated from publicly available single cell RNA sequencing datasets. Finally, we summarize the possible NK cell-based therapeutic approaches against SARS-CoV-2 infection and the ongoing clinical trials updated at the time of submission of this review. We will also discuss how a deep understanding of NK cell responses could open new possibilities for the treatment and prevention of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Immunity, Innate , Killer Cells, Natural , Pandemics , SARS-CoV-2
3.
J Biomed Sci ; 29(1): 55, 2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1965824

ABSTRACT

BACKGROUND: Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS: To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS: We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS: Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.


Subject(s)
Encephalitis, Herpes Simplex , Myocarditis , Ubiquitin-Protein Ligases , Virus Diseases , Animals , Antiviral Agents , Humans , Immunity, Innate , Inflammation/genetics , Mice , Myocarditis/genetics , Myocarditis/virology , Protein Phosphatase 2C , RNA , Ubiquitin-Protein Ligases/genetics
4.
Front Immunol ; 13: 984553, 2022.
Article in English | MEDLINE | ID: covidwho-2142012

ABSTRACT

SARS-CoV-2 plasma viremia has been associated with severe disease and death in COVID-19. However, the effects of viremia on immune responses in blood cells remain unclear. The current study comprehensively examined transcriptional signatures of PBMCs involving T cells, B cells, NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) respectively, from three different groups including individuals with moderate (nM), or severe disease with (vS) or without (nS) detectable plasma viral load. Whole transcriptome analysis demonstrated that all seven immune cell subsets were associated with disease severity regardless of cell type. Supervised clustering analysis demonstrated that mDCs and pDCs gene signatures could distinguish disease severity. Notably, transcriptional signatures of the vS group were enriched in pathways related to DNA repair, E2F targets, and G2M checkpoints; in contrast, transcriptional signatures of the nM group were enriched in interferon responses. Moreover, we observed an impaired induction of interferon responses accompanied by imbalanced cell-intrinsic immune sensing and an excessive inflammatory response in patients with severe disease (nS and vS). In sum, our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in seven major immune cells in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Viremia , Immunity, Innate , Interferons/metabolism
5.
J Transl Med ; 20(1): 542, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2139330

ABSTRACT

The innate immune system serves as the first line of defense against invading pathogens; however, dysregulated innate immune responses can induce aberrant inflammation that is detrimental to the host. Therefore, careful innate immune regulation is critical during infections. The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in global morbidity and mortality as well as socio-economic stresses. Innate immune sensing of SARS-CoV-2 by multiple host cell pattern recognition receptors leads to the production of various pro-inflammatory cytokines and the induction of inflammatory cell death. These processes can contribute to cytokine storm, tissue damage, and acute respiratory distress syndrome. Here, we discuss the sensing of SARS-CoV-2 to induce innate immune activation and the contribution of this innate immune signaling in the development and severity of COVID-19. In addition, we provide a conceptual framework for innate immunity driving cytokine storm and organ damage in patients with severe COVID-19. A better understanding of the molecular mechanisms regulated by innate immunity is needed for the development of targeted modalities that can improve patient outcomes by mitigating severe disease.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Humans , SARS-CoV-2 , Immunity, Innate , Cell Death
6.
Acta Pharmacol Sin ; 43(11): 2789-2806, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2133311

ABSTRACT

Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.


Subject(s)
Diabetic Nephropathies , NLR Proteins , Humans , NLR Proteins/metabolism , Immunity, Innate , Kidney/metabolism , Carrier Proteins
7.
Front Cell Infect Microbiol ; 12: 988604, 2022.
Article in English | MEDLINE | ID: covidwho-2115342

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes
8.
Curr Opin Immunol ; 77: 102189, 2022 08.
Article in English | MEDLINE | ID: covidwho-2114695

ABSTRACT

Development of effective vaccines is a critical global health priority. Stimulating antigen-specific B and T cells to elicit long-lasting protection remains the central paradigm of vaccinology. Adjuvants are components that enhance vaccine immunogenicity by targeting specific innate immune receptors and pathways. Recent data highlight the capacity of adjuvants to induce durable epigenetic reprogramming of the innate immune system to engender heightened resistance against pathogens. This raises the prospect of developing epigenetic adjuvants that, in addition to stimulating robust T and B cell responses, convey broad protection against diverse pathogens by training the innate immune system. In this review, we discuss our emerging understanding of the various vaccines and adjuvants and their effects on durable reprogramming of the innate immune response, their putative mechanisms of action, and the promise and challenges of developing epigenetic adjuvants as a universal vaccine strategy.


Subject(s)
Adjuvants, Immunologic , Vaccines , Adjuvants, Immunologic/pharmacology , Epigenesis, Genetic , Humans , Immune System , Immunity, Innate
9.
Front Immunol ; 13: 819574, 2022.
Article in English | MEDLINE | ID: covidwho-2121729

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.


Subject(s)
COVID-19 , Immunity, Innate , T-Lymphocyte Subsets , Antiviral Agents , COVID-19/immunology , Cytokines , Humans , Receptors, Antigen, T-Cell, gamma-delta , SARS-CoV-2 , T-Lymphocyte Subsets/immunology
10.
Signal Transduct Target Ther ; 7(1): 377, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119328

ABSTRACT

SARS-CoV-2 Omicron variant infection generally gives rise to asymptomatic to moderate COVID-19 in vaccinated people. The immune cells can be reprogrammed or "imprinted" by vaccination and infections to generate protective immunity against subsequent challenges. Considering the immune imprint in Omicron infection is unclear, here we delineate the innate immune landscape of human Omicron infection via single-cell RNA sequencing, surface proteome profiling, and plasma cytokine quantification. We found that monocyte responses predominated in immune imprints of Omicron convalescents, with IL-1ß-associated and interferon (IFN)-responsive signatures with mild and moderate symptoms, respectively. Low-density neutrophils increased and exhibited IL-1ß-associated and IFN-responsive signatures similarly. Mild convalescents had increased blood IL-1ß, CCL4, IL-9 levels and PI3+ neutrophils, indicating a bias to IL-1ß responsiveness, while moderate convalescents had increased blood CXCL10 and IFN-responsive monocytes, suggesting durative IFN responses. Therefore, IL-1ß- or IFN-responsiveness of myeloid cells may indicate the disease severity of Omicron infection and mediate post-COVID conditions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokines , Immunity, Innate/genetics
11.
Elife ; 112022 10 12.
Article in English | MEDLINE | ID: covidwho-2117843

ABSTRACT

Viruses interact with the intracellular transport machinery to promote viral replication. Such host-virus interactions can drive host gene adaptation, leaving signatures of pathogen-driven evolution in host genomes. Here, we leverage these genetic signatures to identify the dynein activating adaptor, ninein-like (NINL), as a critical component in the antiviral innate immune response and as a target of viral antagonism. Unique among genes encoding components of active dynein complexes, NINL has evolved under recurrent positive (diversifying) selection, particularly in its carboxy-terminal cargo-binding region. Consistent with a role for NINL in host immunity, we demonstrate that NINL knockout cells exhibit an impaired response to interferon, resulting in increased permissiveness to viral replication. Moreover, we show that proteases encoded by diverse picornaviruses and coronaviruses cleave and disrupt NINL function in a host- and virus-specific manner. Our work reveals the importance of NINL in the antiviral response and the utility of using signatures of host-virus genetic conflicts to uncover new components of antiviral immunity and targets of viral antagonism.


Humans and viruses are locked in an evolutionary arms race. Viruses hijack cells, using their resources and proteins to build more viral particles; the cells fight back, calling in the immune system to fend off the attack. Both actors must constantly and quickly evolve to keep up with each other. This genetic conflict has been happening for millions of years, and the indelible marks it has left on genes can serve to uncover exactly how viruses interact with the organisms they invade. One hotspot in this host-virus conflict is the complex network of molecules that help to move cargo inside a cell. This system transports elements of the immune system, but viruses can also harness it to make more of themselves. Scientists still know very little about how viruses and the intracellular transport machinery interact, and how this impacts viral replication and the immune response. Stevens et al. therefore set out to identify new interactions between viruses and the transport system by using clues left in host genomes by evolution. They focused on dynein, a core component of this machinery which helps to haul molecular actors across a cell. To do so, dynein relies on adaptor molecules such as 'Ninein-like', or NINL for short. Closely examining the gene sequence for NINL across primates highlighted an evolutionary signature characteristic of host-virus genetic conflicts; this suggests that the protein may be used by viruses to reproduce, or by cells to fend off infection. And indeed, human cells lacking the NINL gene were less able to defend themselves, allowing viruses to grow much faster than normal. Further work showed that NINL was important for a major type of antiviral immune response. As a potential means to sabotage this defence mechanism, some viruses cleave NINL at specific sites and disrupt its role in intracellular transport. Better antiviral treatments are needed to help humanity resist old foes and new threats alike. The work by Stevens et al. demonstrates how the information contained in host genomes can be leveraged to understand what drives susceptibility to an infection, and to pinpoint molecular actors which could become therapeutic targets.


Subject(s)
Dyneins , Viruses , Antiviral Agents , Virus Replication , Immunity, Innate
12.
Life Sci ; 301: 120624, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-2105537

ABSTRACT

AIMS: To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS: HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS: Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 µM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE: Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.


Subject(s)
COVID-19 , Cannabidiol , Antiviral Agents , Apoptosis , Cannabidiol/pharmacology , HEK293 Cells , Humans , Immunity, Innate/genetics , Interferons/pharmacology , Membrane Proteins , Poly I-C/pharmacology , RNA , SARS-CoV-2
13.
J Theor Biol ; 555: 111293, 2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2105496

ABSTRACT

We develop a lattice-based, hybrid discrete-continuum modeling framework for SARS-CoV-2 exposure and infection in the human lung alveolar region, or parenchyma, the massive surface area for gas exchange. COVID-19 pneumonia is alveolar infection by the SARS-CoV-2 virus significant enough to compromise gas exchange. The modeling framework orchestrates the onset and progression of alveolar infection, spatially and temporally, beginning with a pre-immunity baseline, upon which we superimpose multiple mechanisms of immune protection conveyed by interferons and antibodies. The modeling framework is tunable to individual profiles, focusing here on degrees of innate immunity, and to the evolving infection-replication properties of SARS-CoV-2 variant strains. The model employs partial differential equations for virion, interferon, and antibody concentrations governed by diffusion in the thin fluid coating of alveolar cells, species and lattice interactions corresponding to sources and sinks for each species, and multiple immune protections signaled by interferons. The spatial domain is a two-dimensional, rectangular lattice of alveolar type I (non-infectable) and type II (infectable) cells with a stochastic, species-concentration-governed, switching dynamics of type II lattice sites from healthy to infected. Once infected, type II cells evolve through three phases: an eclipse phase during which RNA copies (virions) are assembled; a shedding phase during which virions and interferons are released; and then cell death. Model simulations yield the dynamic spread of, and immune protection against, alveolar infection and viral load from initial sites of exposure. We focus in this paper on model illustrations of the diversity of outcomes possible from alveolar infection, first absent of immune protection, and then with varying degrees of four known mechanisms of interferon-induced innate immune protection. We defer model illustrations of antibody protection to future studies. Results presented reinforce previous recognition that interferons produced solely by infected cells are insufficient to maintain a high efficacy level of immune protection, compelling additional mechanisms to clear alveolar infection, such as interferon production by immune cells and adaptive immunity (e.g., T cells). This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Interferons , Antiviral Agents , Lung , Immunity, Innate , RNA
14.
Immunity ; 55(11): 1993-2005, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2105131

ABSTRACT

The lipid nanoparticle (LNP)-encapsulated, nucleoside-modified mRNA platform has been used to generate safe and effective vaccines in record time against COVID-19. Here, we review the current understanding of the manner whereby mRNA vaccines induce innate immune activation and how this contributes to protective immunity. We discuss innate immune sensing of mRNA vaccines at the cellular and intracellular levels and consider the contribution of both the mRNA and the LNP components to their immunogenicity. A key message that is emerging from recent observations is that the LNP carrier acts as a powerful adjuvant for this novel vaccine platform. In this context, we highlight important gaps in understanding and discuss how new insight into the mechanisms underlying the effectiveness of mRNA-LNP vaccines may enable tailoring mRNA and carrier molecules to develop vaccines with greater effectiveness and milder adverse events in the future.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Vaccines, Synthetic , RNA, Messenger/genetics , Immunity, Innate
15.
Curr Osteoporos Rep ; 20(3): 186-193, 2022 06.
Article in English | MEDLINE | ID: covidwho-1820676

ABSTRACT

PURPOSE OF REVIEW: To review the mechanisms by which vitamin D and its metabolites regulate the immune system to facilitate the ability of the body to prevent and/or treat SARS-CoV2 and other respiratory infections and encourage further research into the role that vitamin D supplementation plays in preventing/treating such infections. RECENT FINDINGS: Vitamin D deficiency is associated with an increased risk of SARS-CoV2 and other respiratory infections. Clinical trials in general demonstrate that correction of vitamin D deficiency reduces the risk of hospitalization, ICU admission, and death from SARS-CoV2 infection. The airway epithelium and alveolar macrophages express the enzyme, CYP27B1, that produces the active metabolite of vitamin D, 1,25(OH)2D, and the vitamin D receptor, VDR. Vitamin D and its metabolites promote the innate immune response, which provides the first line of defense against viral and bacterial infections while restricting the adaptive immune response, which if unchecked promotes the inflammatory response leading to the acute respiratory distress syndrome and death. The rationale for treating vitamin D deficiency to reduce the risk of SARS-CoV2 infection and supplementing patients with vitamin D early in the course of SARS-CoV2 infection rests primarily on the ability of vitamin D metabolites to promote an effective immune response to the infection.


Subject(s)
COVID-19 , Vitamin D Deficiency , Humans , Immunity, Innate/physiology , RNA, Viral , SARS-CoV-2 , Vitamin D/metabolism , Vitamin D Deficiency/complications
16.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099576

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.


Subject(s)
COVID-19 , Interferon Type I , Humans , COVID-19/drug therapy , Acetylation , NF-kappa B/metabolism , Drug Repositioning , Membrane Proteins/metabolism , SARS-CoV-2 , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism , Aspirin , Immunity, Innate/genetics
17.
Monoclon Antib Immunodiagn Immunother ; 41(5): 229-230, 2022 10.
Article in English | MEDLINE | ID: covidwho-2097269
18.
Cell Syst ; 13(11): 924-931.e4, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2095148

ABSTRACT

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
COVID-19 , Immunity, Innate , Sex Characteristics , Female , Humans , Male , Young Adult , COVID-19/immunology , Interferons , Proteomics , SARS-CoV-2
19.
Cell Mol Life Sci ; 79(11): 547, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2093246

ABSTRACT

Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.


Subject(s)
Communicable Diseases , Pathogen-Associated Molecular Pattern Molecules , Adaptive Immunity , Animals , Antiviral Agents/pharmacology , Immunity, Innate , Receptors, Antigen, T-Cell , Toll-Like Receptors
20.
Viruses ; 14(11)2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2090358

ABSTRACT

Since the end of 2019, humanity has been facing the emergence of a new large positive-sense, single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes a respiratory disease with substantial morbidity and mortality called coronavirus disease 19 (COVID-19) [...].


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL