Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 970
Filter
1.
Sci Rep ; 12(1): 13146, 2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1967629

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 has been recognized as an attractive drug target because of its central role in viral replication. Our previous preliminary molecular docking studies showed that theaflavin 3-gallate (a natural bioactive molecule derived from theaflavin and found in high abundance in black tea) exhibited better docking scores than repurposed drugs (Atazanavir, Darunavir, Lopinavir). In this study, conventional and steered MD-simulations analyses revealed stronger interactions of theaflavin 3-gallate with the active site residues of Mpro than theaflavin and a standard molecule GC373 (a known inhibitor of Mpro and novel broad-spectrum anti-viral agent). Theaflavin 3-gallate inhibited Mpro protein of SARS-CoV-2 with an IC50 value of 18.48 ± 1.29 µM. Treatment of SARS-CoV-2 (Indian/a3i clade/2020 isolate) with 200 µM of theaflavin 3-gallate in vitro using Vero cells and quantifying viral transcripts demonstrated reduction of viral count by 75% (viral particles reduced from Log106.7 to Log106.1). Overall, our findings suggest that theaflavin 3-gallate effectively targets the Mpro thus limiting the replication of the SARS-CoV-2 virus in vitro.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biflavonoids , COVID-19/drug therapy , Catechin , Chlorocebus aethiops , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Vero Cells
2.
Sci Rep ; 12(1): 13118, 2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1967627

ABSTRACT

The pandemic caused by severe acute respiratory Coronavirus-2 (SARS-CoV-2) has been ongoing for over two years, and treatment for COVID-19, other than monoclonal antibodies, is urgently required. Accordingly, we have investigated the inhibitors of SARS-CoV-2 protein targets by high-throughput virtual screening using a marine natural products database. Considering the calculated molecular properties and availability of the compounds, (+)-usnic acid was selected as a suitable hit. In the in vitro antiviral assay of (+)-usnic acid by the immunofluorescence method, IC50 was 7.99 µM, which is similar to that of remdesivir used as a positive control. The generalized Born and surface area continuum solvation (MM/GBSA) method was performed to find the potent target of (+)-usnic acid, and the Mpro protein showed the most prominent value, -52.05 kcal/mol, among other SARS-CoV-2 protein targets. Thereafter, RMSD and protein-ligand interactions were profiled using molecular dynamics (MD) simulations. Sodium usnate (NaU) improved in vitro assay results with an IC50 of 5.33 µM and a selectivity index (SI) of 9.38. Additionally, when (+)-usnic acid was assayed against SARS-CoV-2 variants, it showed enhanced efficacy toward beta variants with an IC50 of 2.92 µM and SI of 11.1. We report the in vitro anti-SARS-CoV-2 efficacy of (+)-usnic acid in this study and propose that it has the potential to be developed as a COVID-19 treatment if its in vivo efficacy has been confirmed.


Subject(s)
COVID-19 , Coronavirus Infections , Coronavirus , Benzofurans , COVID-19/drug therapy , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Salts
3.
Sci Rep ; 12(1): 12986, 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1967620

ABSTRACT

Emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its current worldwide spread have caused a pandemic of acute respiratory disease COVID-19. The virus can result in mild to severe, and even to fatal respiratory illness in humans, threatening human health and public safety. The spike (S) protein on the surface of viral membrane is responsible for viral entry into host cells. The discovery of methods to inactivate the entry of SARS-CoV-2 through disruption of the S protein binding to its cognate receptor on the host cell is an active research area. To explore other prevention strategies against the quick spread of the virus and its mutants, non-equilibrium molecular dynamics simulations have been employed to explore the possibility of manipulating the structure-activity of the SARS-CoV-2 spike glycoprotein by applying electric fields (EFs) in both the protein axial directions and in the direction perpendicular to the protein axis. We have found out the application of EFs perpendicular to the protein axis is most effective in denaturing the HR2 domain which plays critical role in viral-host membrane fusion. This finding suggests that varying irradiation angles may be an important consideration in developing EF based non-invasive technologies to inactivate the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism
4.
Molecules ; 27(12)2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1964033

ABSTRACT

Despite the effectiveness of COVID-19 vaccines, there is still an urgent need for discovering new anti-viral drugs to address the awful spread and transmission of the rapidly modifiable virus. In this study, the ability of a small library of enantiomerically pure spirooxindolopyrrolidine-grafted piperidones to inhibit the main protease of SARS-CoV-2 (Mpro) is evaluated. These spiroheterocycles were synthesized by 1,3-dipolar cycloaddition of various stabilized azomethine ylides with chiral dipolarophiles derived from N-[(S)-(-)-methylbenzyl]-4-piperidone. The absolute configuration of contiguous carbons was confirmed by a single crystal X-ray diffraction analysis. The binding of these compounds to SARS-CoV-2 Mpro was investigated using molecular docking and molecular dynamics simulation. Three compounds 4a, 4b and 4e exhibited stable binding modes interacting with the key subsites of the substrate-binding pocket of SARS-CoV-2 Mpro. The synthesized compounds represent potential leads for the development of novel inhibitors of SARS-CoV-2 main protease protein for COVID-19 treatment.


Subject(s)
COVID-19 , Piperidones , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19 Vaccines , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
5.
Mar Drugs ; 20(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1964023

ABSTRACT

Coronavirus disease 2019, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global pandemic that poses an unprecedented threat to the global economy and human health. Several potent inhibitors targeting SARS-CoV-2 have been published; however, most of them have failed in clinical trials. This study aimed to assess the therapeutic compounds among aldehyde derivatives from seaweeds as potential SARS-CoV-2 inhibitors using a computer simulation protocol. The absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of the compounds were analyzed using a machine learning algorithm, and the docking simulation of these compounds to the 3C-like protease (Protein Data Bank (PDB) ID: 6LU7) was analyzed using a molecular docking protocol based on the CHARMm algorithm. These compounds exhibited good drug-like properties following the Lipinski and Veber rules. Among the marine aldehyde derivatives, 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, and 5-bromoprotocatechualdehyde were predicted to have good absorption and solubility levels and non-hepatotoxicity in the ADME/Tox prediction. 3-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were predicted to be non-toxic in TOPKAT prediction. In addition, 3,4-dihydroxybenzaldehyde was predicted to exhibit interactions with the 3C-like protease, with binding energies of -71.9725 kcal/mol. The computational analyses indicated that 3,4-dihydroxybenzaldehyde could be regarded as potential a SARS-CoV-2 inhibitor.


Subject(s)
COVID-19 , Seaweed , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Computer Simulation , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Seaweed/metabolism , Viral Nonstructural Proteins/chemistry
6.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1964014

ABSTRACT

Herein, we elucidate the biophysical aspects of the interaction of an important protein, Interleukin-6 (IL6), which is involved in cytokine storm syndrome, with a natural product with anti-inflammatory activity, piperine. Despite the role of piperine in the inhibition of the transcriptional protein NF-κB pathway responsible for activation of IL6 gene expression, there are no studies to the best of our knowledge regarding the characterisation of the molecular interaction of the IL6-piperine complex. In this context, the characterisation was performed with spectroscopic experiments aided by molecular modelling. Fluorescence spectroscopy alongside van't Hoff analyses showed that the complexation event is a spontaneous process driven by non-specific interactions. Circular dichroism aided by molecular dynamics revealed that piperine caused local α-helix reduction. Molecular docking and molecular dynamics disclosed the microenvironment of interaction as non-polar amino acid residues. Although piperine has three available hydrogen bond acceptors, only one hydrogen-bond was formed during our simulation experiments, reinforcing the major role of non-specific interactions that we observed experimentally. Root mean square deviation (RMSD) and hydrodynamic radii revealed that the IL6-piperine complex was stable during 800 ns of simulation. Taken together, these results can support ongoing IL6 drug discovery efforts.


Subject(s)
Interleukin-6 , Polyunsaturated Alkamides , Alkaloids , Benzodioxoles/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperidines , Polyunsaturated Alkamides/metabolism
7.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1964003

ABSTRACT

The mosquito-borne disease caused by the Rocio virus is a neglected threat, and new immune inputs for serological testing are urgently required for diagnosis in low-resource settings and epidemiological surveillance. We used in silico approaches to identify a specific antigenic peptide (p_ROCV2) in the NS1 protein of the Rocio virus that was theoretically predicted to be stable and exposed on its surface, where it demonstrated key properties allowing it to interact with antibodies. These findings related to the molecular dynamics of this peptide provide important insights for advancing diagnostic platforms and investigating therapeutic alternatives.


Subject(s)
Flavivirus , Molecular Dynamics Simulation , Animals , Immunologic Tests , Molecular Docking Simulation , Peptides , Viral Nonstructural Proteins/chemistry
8.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1963998

ABSTRACT

In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.


Subject(s)
COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
9.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1963997

ABSTRACT

Treatment options for Coronavirus Disease 2019 (COVID-19) remain limited, and the option of repurposing approved drugs with promising medicinal properties is of increasing interest in therapeutic approaches to COVID-19. Using computational approaches, we examined griseofulvin and its derivatives against four key anti-SARS-CoV-2 targets: main protease, RdRp, spike protein receptor-binding domain (RBD), and human host angiotensin-converting enzyme 2 (ACE2). Molecular docking analysis revealed that griseofulvin (CID 441140) has the highest docking score (-6.8 kcal/mol) with main protease of SARS-CoV-2. Moreover, griseofulvin derivative M9 (CID 144564153) proved the most potent inhibitor with -9.49 kcal/mol, followed by A3 (CID 46844082) with -8.44 kcal/mol against M protease and ACE2, respectively. Additionally, H bond analysis revealed that compound A3 formed the highest number of hydrogen bonds, indicating the strongest inhibitory efficacy against ACE2. Further, molecular dynamics (MD) simulation analysis revealed that griseofulvin and these derivatives are structurally stable. These findings suggest that griseofulvin and its derivatives may be considered when designing future therapeutic options for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Griseofulvin/pharmacology , Griseofulvin/therapeutic use , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
10.
PLoS One ; 17(7): e0268156, 2022.
Article in English | MEDLINE | ID: covidwho-1962996

ABSTRACT

Despite using effective drugs and vaccines for Covid 19, due to some limitations of current strategies and the high rate of coronavirus mutation, the development of medicines with effective inhibitory activity against this infection is essential. The SARS-CoV-2 enters the cell by attaching its receptor-binding domain (RBD) of Spike to angiotensin-converting enzyme-2 (ACE2). According to previous studies, the natural peptide Urtica dioica agglutinin (UDA) exhibited an antiviral effect on SARS-CoV, but its mechanism has not precisely been elucidated. Here, we studied the interaction between UDA and RBD of Spike protein of SARS-CoV-2. So, protein-protein docking of RBD-UDA was performed using Cluspro 2.0. To further confirm the stability of the complex, the RBD-UDA docked complex with higher binding affinity was studied using Molecular Dynamic simulation (via Gromacs 2020.2), and MM-PBSA calculated the binding free energy of the system. In addition, ELISA assay was used to examine the binding of UDA with RBD protein. Results were compared to ELISA of RBD-bound samples of convalescent serum IgG (from donors who recovered from Covid 19). Finally, the toxicity of UDA is assessed by using MTT assay. The docking results show UDA binds to the RBD binding site. MD simulation illustrates the UDA-RBD complex is stable during 100 ns of simulation, and the average binding energy was calculated to be -47.505 kJ/mol. ELISA and, MTT results show that UDA binds to RBD like IgG-RBD binding and may be safe in human cells. Data presented here indicate UDA interaction with S-protein inhibits the binding sites of RBD, it can prevent the virus from attaching to ACE2 and entering the host cell.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Immunoglobulin G/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptidyl-Dipeptidase A/metabolism , Plant Lectins , Plant Proteins/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
11.
ScientificWorldJournal ; 2022: 7089576, 2022.
Article in English | MEDLINE | ID: covidwho-1962495

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the host cells by binding the viral surface spike glycoprotein (SG) to angiotensin-converting enzyme 2. Since antiviral photodynamic therapy (aPDT) has been described as a new method for inhibiting viral infections, it is important to evaluate whether it can be used as a photoactivated disinfectant to control COVID-19. In this in silico study, SARS-CoV-2-SG was selected as a novel target for curcumin as a photosensitizer during aPDT to exploit its physicochemical properties, molecular modeling, hierarchical nature of protein structure, and functional analysis using several bioinformatics tools and biological databases. The results of a detailed computational investigation revealed that SARS-CoV-2-SG is most similar to 6VXX_A, with 100% query cover and identity. The predicted structure of SARS-CoV-2-SG displayed that it is a protein with a positive charge and random coil dominates other secondary structures located outside the viral cell. The protein-protein interaction network showed that SARS-CoV-2-SG interacted with ten potential interacting partners. In addition, primary screening of binding modes through molecular docking showed that curcumin desires to bind and interact with residues of SARS-CoV-2-SG as the main site to enhance the yield of aPDT. Overall, the computer simulation reveals that SARS-CoV-2-SG can be a suitable target site for interaction with curcumin during aPDT.


Subject(s)
Anti-Infective Agents , COVID-19 , Curcumin , Photochemotherapy , Anti-Bacterial Agents , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Computer Simulation , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
12.
Sci Rep ; 12(1): 12802, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1960496

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 led to the research aiming to find the inhibitors of this virus. Towards this world problem, an attempt was made to identify SARS-CoV-2 main protease (Mpro) inhibitory peptides from ricin domains. The ricin-based peptide from barley (BRIP) was able to inhibit Mpro in vitro with an IC50 of 0.52 nM. Its low and no cytotoxicity upto 50 µM suggested its therapeutic potential against SARS-CoV-2. The most favorable binding site on Mpro was identified by molecular docking and steered molecular dynamics (MD) simulations. The Mpro-BRIP interactions were further investigated by evaluating the trajectories for microsecond timescale MD simulations. The structural parameters of Mpro-BRIP complex were stable, and the presence of oppositely charged surfaces on the binding interface of BRIP and Mpro complex further contributed to the overall stability of the protein-peptide complex. Among the components of thermodynamic binding free energy, Van der Waals and electrostatic contributions were most favorable for complex formation. Our findings provide novel insight into the area of inhibitor development against COVID-19.


Subject(s)
COVID-19 , Hordeum , Ricin , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Hordeum/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptides/pharmacology , Protease Inhibitors/pharmacology , Ricin/metabolism , Ricin/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
13.
J Chem Inf Model ; 62(12): 3107-3122, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1960219

ABSTRACT

Emerging SARS-CoV-2 variants raise concerns about our ability to withstand the Covid-19 pandemic, and therefore, understanding mechanistic differences of those variants is crucial. In this study, we investigate disparities between the SARS-CoV-2 wild type and five variants that emerged in late 2020, focusing on the structure and dynamics of the spike protein interface with the human angiotensin-converting enzyme 2 (ACE2) receptor, by using crystallographic structures and extended analysis of microsecond molecular dynamics simulations. Dihedral angle principal component analysis (PCA) showed the strong similarities in the spike receptor binding domain (RBD) dynamics of the Alpha, Beta, Gamma, and Delta variants, in contrast with those of WT and Epsilon. Dynamical perturbation networks and contact PCA identified the peculiar interface dynamics of the Delta variant, which cannot be directly imputable to its specific L452R and T478K mutations since those residues are not in direct contact with the human ACE2 receptor. Our outcome shows that in the Delta variant the L452R and T478K mutations act synergistically on neighboring residues to provoke drastic changes in the spike/ACE2 interface; thus a singular mechanism of action eventually explains why it dominated over preceding variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Humans , Molecular Dynamics Simulation , Mutation , Pandemics , Protein Binding , SARS-CoV-2/genetics
14.
Nutrients ; 14(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957403

ABSTRACT

Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of -9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.


Subject(s)
Ananas , Bacteria , Bromelains , SARS-CoV-2 , Ananas/chemistry , Antiviral Agents/pharmacology , Bacteria/drug effects , Bromelains/pharmacology , COVID-19 , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects
15.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957395

ABSTRACT

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.


Subject(s)
Alkaloids , COVID-19 , Solanaceae , Alkaloids/pharmacology , Anthocyanins , Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Solanaceae/metabolism , Vegetables/metabolism , Viral Nonstructural Proteins/metabolism
16.
Structure ; 30(8): 1062-1074.e4, 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-1946637

ABSTRACT

The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Benzene , Cryoelectron Microscopy , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
17.
Microb Pathog ; 169: 105615, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1946063

ABSTRACT

Herein we have selected seventeen anti-lung cancer drugs to screen against Mpro, PLpro and spike glycoproteins of SARS-CoV-2to ascertain the potential therapeutic agent against COVID-19. ADMET profiling were employed to evaluate their pharmacokinetic properties. Molecular docking studies revealed that Capmatinib (CAP) showed highest binding affinity against the selected proteins of SARS-CoV-2. Molecular Dynamics (MD) simulation and the analysis of RMSD, RMSF, and binding energy confirmed the abrupt conformational changes of the proteins due to the presence of this drug. These findings provide an opportunity for doing advanced experimental research to evaluate the potential drug to combat COVID-19.


Subject(s)
Antineoplastic Agents , COVID-19 , Neoplasms , Antineoplastic Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
18.
Comput Biol Med ; 147: 105709, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1944685

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the contagious coronavirus disease 2019 (COVID-19) which was first identified in Wuhan, China, in December 2019. Around the world, many researchers focused their research on identifying inhibitors against the druggable SARS-CoV-2 targets. The reported genomic mutations have a direct effect on the receptor-binding domain (RBD), which interacts with host angiotensin-converting enzyme 2 (ACE-2) for viral cell entry. These mutations, some of which are variants of concern (VOC), lead to increased morbidity and mortality rates. The newest variants including B.1.617.2 (Delta), AY.1 (Delta plus), and C.37 (Lambda) were considered in this study. Thus, an exhaustive structure-based virtual screening of a ligand library (in which FDA approved drugs are also present) using the drug-likeness screening, molecular docking, ADMET profiling was performed followed by molecular dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation to identify compounds or drugs can be repurposed for inhibiting the wild type, Delta, Delta plus and Lambda variants of RBD of the spike protein. Based on the virtual screening steps, two FDA approved drugs, Atovaquone (atv) and Praziquantel (prz), were selected and repurposed as the best candidates of SARS-CoV-2 RBD inhibitors. Molecular docking results display that both atv and prz contribute in different interaction with binding site residues (Gln493, Asn501 and Gly502 in the hydrogen bond formation, Phe490 and Tyr505 in the π- π stacking and Tyr449, Ser494, and Phe497 in the vdW interactions) in the wild type, Delta, Delta plus and Lambda variants of RBD of the spike protein. MD simulations revealed that among the eight studied complexes, the wild type-atv and Delta-prz complexes have the most structural stability over the simulation time. Furthermore, MM-PBSA calculation showed that in the atv containing complexes, highest binding affinity is related to the wild type-atv complex and in the prz containing complexes, it is related to the Delta-prz complex. The validation of docking results was done by comparing with experimental data (heparin in complex with wild type and Delta variants). Also, comparison of the obtained results with the result of simulation of the k22 with the studied proteins showed that atv and prz are suitable inhibitors for these proteins, especially wild type t and Delta variant, respectively. Thus, we found that atv and prz are the best candidate for inhibition of wild type and Delta variant of the spike protein. Also, atv can be an appropriate inhibitor for the Lambda variant. Obtained in silico results may help the development of new anti-COVID-19 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipates , COVID-19/drug therapy , COVID-19/genetics , Drug Repositioning/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation/genetics , Peptidyl-Dipeptidase A/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Succinates
19.
Phys Chem Chem Phys ; 24(29): 17723-17743, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1947641

ABSTRACT

Dissecting the regulatory principles underlying function and activity of the SARS-CoV-2 spike protein at the atomic level is of paramount importance for understanding the mechanisms of virus transmissibility and immune escape. In this work, we introduce a hierarchical computational approach for atomistic modeling of allosteric mechanisms in the SARS-CoV-2 Omicron spike proteins and present evidence of a frustration-based allostery as an important energetic driver of the conformational changes and spike activation. By examining conformational landscapes and the residue interaction networks in the SARS-CoV-2 Omicron spike protein structures, we have shown that the Omicron mutational sites are dynamically coupled and form a central engine of the allosterically regulated spike machinery that regulates the balance and tradeoffs between conformational plasticity, protein stability, and functional adaptability. We have found that the Omicron mutational sites at the inter-protomer regions form regulatory hotspot clusters that control functional transitions between the closed and open states. Through perturbation-based modeling of allosteric interaction networks and diffusion analysis of communications in the closed and open spike states, we have quantified the allosterically regulated activation mechanism and uncover specific regulatory roles of the Omicron mutations. Atomistic reconstruction of allosteric communication pathways and kinetic modeling using Markov transient analysis reveal that the Omicron mutations form the inter-protomer electrostatic bridges that operate as a network of coupled regulatory switches that could control global conformational changes and signal transmission in the spike protein. The results of this study have revealed distinct and yet complementary roles of the Omicron mutation sites as a network of hotspots that enable allosteric modulation of structural stability and conformational changes which are central for spike activation and virus transmissibility.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Allosteric Regulation , Humans , Molecular Dynamics Simulation , Mutation , Protein Conformation , Protein Stability , Protein Subunits , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
20.
Sci Rep ; 12(1): 12489, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1947491

ABSTRACT

Alchemical free energy perturbation (FEP) is a rigorous and powerful technique to calculate the free energy difference between distinct chemical systems. Here we report our implementation of automated large-scale FEP calculations, using the Amber software package, to facilitate antibody design and evaluation. In combination with Hamiltonian replica exchange, our FEP simulations aim to predict the effect of mutations on both the binding affinity and the structural stability. Importantly, we incorporate multiple strategies to faithfully estimate the statistical uncertainties in the FEP results. As a case study, we apply our protocols to systematically evaluate variants of the m396 antibody for their conformational stability and their binding affinity to the spike proteins of SARS-CoV-1 and SARS-CoV-2. By properly adjusting relevant parameters, the particle collapse problems in the FEP simulations are avoided. Furthermore, large statistical errors in a small fraction of the FEP calculations are effectively reduced by extending the sampling, such that acceptable statistical uncertainties are achieved for the vast majority of the cases with a modest total computational cost. Finally, our predicted conformational stability for the m396 variants is qualitatively consistent with the experimentally measured melting temperatures. Our work thus demonstrates the applicability of FEP in computational antibody design.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Antibodies , Humans , SARS-CoV-2 , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL