Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R99-R111, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-2162033

ABSTRACT

A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.


Subject(s)
COVID-19/complications , COVID-19/immunology , Lipopolysaccharides/toxicity , Poly I-C/toxicity , Prenatal Exposure Delayed Effects/immunology , SARS-CoV-2 , Bacterial Infections/immunology , Female , Humans , Pregnancy
2.
J Neuroimmunol ; 358: 577654, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1386080

ABSTRACT

Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1ß, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.


Subject(s)
Ethanolamines/pharmacology , Hyperthermia, Induced/methods , Inflammation Mediators/metabolism , PPAR alpha/metabolism , Toll-Like Receptor 3/administration & dosage , Amidohydrolases/pharmacology , Animals , Female , Gene Expression , PPAR alpha/agonists , PPAR alpha/antagonists & inhibitors , Poly I-C/toxicity , Rats , Rats, Sprague-Dawley
3.
Cell Death Dis ; 12(1): 53, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1015001

ABSTRACT

Interleukin-38 has recently been shown to have anti-inflammatory properties in lung inflammatory diseases. However, the effects of IL-38 in viral pneumonia remains unknown. In the present study, we demonstrate that circulating IL-38 concentrations together with IL-36α increased significantly in influenza and COVID-19 patients, and the level of IL-38 and IL-36α correlated negatively and positively with disease severity and inflammation, respectively. In the co-cultured human respiratory epithelial cells with macrophages to mimic lung microenvironment in vitro, IL-38 was able to alleviate inflammatory responses by inhibiting poly(I:C)-induced overproduction of pro-inflammatory cytokines and chemokines through intracellular STAT1, STAT3, p38 MAPK, ERK1/2, MEK, and NF-κB signaling pathways. Intriguingly, transcriptomic profiling revealed that IL-38 targeted genes were associated with the host innate immune response to virus. We also found that IL-38 counteracts the biological processes induced by IL-36α in the co-culture. Furthermore, the administration of recombinant IL-38 could mitigate poly I:C-induced lung injury, with reduced early accumulation of neutrophils and macrophages in bronchoalveolar lavage fluid, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines and permeability of the alveolar-epithelial barrier. Taken together, our study indicates that IL-38 plays a crucial role in protection from exaggerated pulmonary inflammation during poly(I:C)-induced pneumonia, thereby providing the basis of a novel therapeutic target for respiratory viral infections.


Subject(s)
COVID-19/metabolism , Immunity, Innate/drug effects , Influenza, Human/metabolism , Interleukins/pharmacology , Pneumonia/prevention & control , Poly I-C/toxicity , Respiratory System/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Influenza A virus/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Interleukin-1/blood , Interleukins/blood , Male , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/pathology , Respiratory System/metabolism , Respiratory System/pathology , SARS-CoV-2/isolation & purification
4.
J Cell Mol Med ; 24(21): 12869-12872, 2020 11.
Article in English | MEDLINE | ID: covidwho-863121

ABSTRACT

Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes. In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system. By administering intranasal Poly (I:C), a synthetic viral dsRNA, while we were able to mimic the symptoms of ARDS in a murine model, interestingly, there was a significant decrease in the expression of apelin in both blood and lung tissues. CBD treatment was able to reverse the symptoms of ARDS towards a normal level. Importantly, CBD treatment increased the apelin expression significantly, suggesting a potential crosstalk between apelinergic system and CBD may be the therapeutic target in the treatment of inflammatory diseases such as COVID-19 and many other pathologic conditions.


Subject(s)
Apelin/metabolism , Cannabidiol/pharmacology , Respiratory Distress Syndrome/drug therapy , Administration, Intranasal , Animals , Lung/drug effects , Lung/pathology , Male , Mice, Inbred C57BL , Poly I-C/toxicity , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL