Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Sci Rep ; 12(1): 12489, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1947491

ABSTRACT

Alchemical free energy perturbation (FEP) is a rigorous and powerful technique to calculate the free energy difference between distinct chemical systems. Here we report our implementation of automated large-scale FEP calculations, using the Amber software package, to facilitate antibody design and evaluation. In combination with Hamiltonian replica exchange, our FEP simulations aim to predict the effect of mutations on both the binding affinity and the structural stability. Importantly, we incorporate multiple strategies to faithfully estimate the statistical uncertainties in the FEP results. As a case study, we apply our protocols to systematically evaluate variants of the m396 antibody for their conformational stability and their binding affinity to the spike proteins of SARS-CoV-1 and SARS-CoV-2. By properly adjusting relevant parameters, the particle collapse problems in the FEP simulations are avoided. Furthermore, large statistical errors in a small fraction of the FEP calculations are effectively reduced by extending the sampling, such that acceptable statistical uncertainties are achieved for the vast majority of the cases with a modest total computational cost. Finally, our predicted conformational stability for the m396 variants is qualitatively consistent with the experimentally measured melting temperatures. Our work thus demonstrates the applicability of FEP in computational antibody design.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Antibodies , Humans , SARS-CoV-2 , Thermodynamics
2.
Int J Mol Sci ; 21(16)2020 Aug 06.
Article in English | MEDLINE | ID: covidwho-1934101

ABSTRACT

The recently discovered 340-cavity in influenza neuraminidase (NA) N6 and N7 subtypes has introduced new possibilities for rational structure-based drug design. However, the plasticity of the 340-loop (residues 342-347) and the role of the 340-loop in NA activity and substrate binding have not been deeply exploited. Here, we investigate the mechanism of 340-cavity formation and demonstrate for the first time that seven of nine NA subtypes are able to adopt an open 340-cavity over 1.8 µs total molecular dynamics simulation time. The finding that the 340-loop plays a role in the sialic acid binding pathway suggests that the 340-cavity can function as a druggable pocket. Comparing the open and closed conformations of the 340-loop, the side chain orientation of residue 344 was found to govern the formation of the 340-cavity. Additionally, the conserved calcium ion was found to substantially influence the stability of the 340-loop. Our study provides dynamical evidence supporting the 340-cavity as a druggable hotspot at the atomic level and offers new structural insight in designing antiviral drugs.


Subject(s)
Antiviral Agents/pharmacology , Drug Development , Neuraminidase/chemistry , Orthomyxoviridae/enzymology , Binding Sites , Calcium/chemistry , Ions , Models, Molecular , Molecular Dynamics Simulation , N-Acetylneuraminic Acid/chemistry , Principal Component Analysis , Protein Structure, Secondary , Thermodynamics
3.
J Mol Graph Model ; 116: 108264, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914640

ABSTRACT

The structural variation of RNA is often very transient and can be easily missed in experiments. Molecular dynamics simulation studies along with network analysis can be an effective tool to identify prominent conformations of such dynamic biomolecular systems. Here we describe a method to effectively sample different RNA conformations at six different temperatures based on the changes in the interhelical orientations. This method gives the information about prominent states of the RNA as well as the probability of the existence of different conformations and their interconnections during the process of evolution. In the case of the SARS-CoV-2 genome, the change of prominent structures was found to be faster at 333 K as compared to higher temperatures due to the formation of the non-native base pairs. ΔΔG calculated between 288 K and 363 K are found to be 10.31 kcal/mol (88 nt) considering the contribution from the multiple states of the RNA which agrees well with the experimentally reported denaturation energy for E. coli α mRNA pseudoknot (∼16 kcal/mol, 112 nt) determined by calorimetry/UV hyperchromicity and human telomerase RNA telomerase (4.5-6.6 kcal/mol, 54 nt) determined by FRET analysis.


Subject(s)
COVID-19 , Escherichia coli , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , SARS-CoV-2/genetics , Thermodynamics
4.
Sci Rep ; 12(1): 10970, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1908293

ABSTRACT

Pharmaceutical wastewater contamination via azithromycin antibiotic and the continuous emergence of some strains of bacteria, cancer, and the Covid-19 virus. Azithromycin wastewater treatment using the biosynthesized Hematite nanoparticles (α-HNPs) and the biocompatible activities of the resulted nanosystem were reported. Biofabrication of α-HNPs using Echinacea purpurea liquid extract as a previously reported approach was implemented. An evaluation of the adsorption technique via the biofabricated α-HNPs for the removal of the Azr drug contaminant from the pharmaceutical wastewater was conducted. Adsorption isotherm, kinetics, and thermodynamic parameters of the Azr on the α-HNPs surface have been investigated as a batch mode of equilibrium experiments. Antibacterial, anticancer, and antiviral activities were conducted as Azr@α-HNPs. The optimum conditions for the adsorption study were conducted as solution pH = 10, 150 mg dose of α-HNPs, and Azr concentration 400 mg/L at 293 K. The most fitted isothermal model was described according to the Langmuir model at adsorption capacity 114.05 mg/g in a pseudo-second-order kinetic mechanistic at R2 0.9999. Thermodynamic study manifested that the adsorption behavior is a spontaneous endothermic chemisorption process. Subsequently, studying the biocompatible applications of the Azr@α-HNPs. Azr@α-HNPs antibacterial activity revealed a synergistic effect in the case of Gram-positive more than Gram-negative bacteria. IC50 of Azr@α-HNPs cytotoxicity against MCF7, HepG2, and HCT116 cell lines was investigated and it was found to be 78.1, 81.7, and 93.4 µg/mL respectively. As the first investigation of the antiviral use of Azr@α-HNPs against SARS-CoV-2, it was achieved a safety therapeutic index equal to 25.4 revealing a promising antiviral activity. An admirable impact of the use of the biosynthesized α-HNPs and its removal nanosystem product Azr@α-HNPs was manifested and it may be used soon as a platform of the drug delivery nanosystem for the biomedical applications.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/pharmacology , Antiviral Agents , Azithromycin/pharmacology , COVID-19/drug therapy , Humans , Hydrogen-Ion Concentration , Kinetics , Magnetic Iron Oxide Nanoparticles , Pharmaceutical Preparations , SARS-CoV-2 , Thermodynamics , Waste Water , Water Pollutants, Chemical/analysis
5.
J Phys Chem Lett ; 13(27): 6250-6258, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1908078

ABSTRACT

Calculating the standard binding free energies of protein-protein and protein-ligand complexes from atomistic molecular dynamics simulations in explicit solvent is a problem of central importance in computational biophysics. A rigorous strategy for carrying out such calculations is the so-called "geometrical route". In this method, two molecular objects are progressively separated from one another in the presence of orientational and conformational restraints serving to control the change in configurational entropy that accompanies the dissociation process, thereby allowing the computations to converge within simulations of affordable length. Although the geometrical route provides a rigorous theoretical framework, a tantalizing computational shortcut consists of simply leaving out such orientational and conformational degrees of freedom during the separation process. Here the accuracy and convergence of the two approaches are critically compared in the case of two protein-ligand complexes (Abl kinase-SH3:p41 and MDM2-p53:NVP-CGM097) and three protein-protein complexes (pig insulin dimer, SARS-CoV-2 spike RBD:ACE2, and CheA kinase-P2:CheY). The results of the simulations that strictly follow the geometrical route match the experimental standard binding free energies within chemical accuracy. In contrast, simulations bereft of geometrical restraints converge more poorly, yielding inconsistent results that are at variance with the experimental measurements. Furthermore, the orientational and positional time correlation functions of the protein in the unrestrained simulations decay over several microseconds, a time scale that is far longer than the typical simulation times of the geometrical route, which explains why those simulations fail to sample the relevant degrees of freedom during the separation process of the complexes.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Entropy , Ligands , Molecular Dynamics Simulation , Protein Binding , Proteins/chemistry , Swine , Thermodynamics
6.
Comput Biol Chem ; 99: 107692, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1850896

ABSTRACT

The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Drug Combinations , Humans , Ivermectin , Lactams , Leucine , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles , Pandemics , Peptide Hydrolases/metabolism , Proline , Protease Inhibitors/chemistry , Ritonavir , Thermodynamics
7.
Virology ; 570: 35-44, 2022 05.
Article in English | MEDLINE | ID: covidwho-1764026

ABSTRACT

SARS-CoV-2 virus is the cause of COVID-19 pandemic and belongs to RNA viruses, showing great tendency to mutate. Several dozens of mutations have been observed on the SARS-CoV-2 virus, during the last two years. Some of the mutated strains show a greater infectivity and are capable of suppressing the earlier strains, through interference. In this work, kinetic and thermodynamic properties were calculated for strains characterized by various numbers and locations of mutations. It was shown that mutations lead to changes in chemical composition, thermodynamic properties and infectivity. Through competition, the phenomenon of interference of various SARS-CoV-2 strains was explained, which results in suppression of the wild type by mutant strains. Standard Gibbs energy of binding and binding constant for the Omicron (B.1.1.529) strain were found to be ΔBG° = -45.96 kJ/mol and KB = 1.13 ∙ 10+8 M-1, respectively.


Subject(s)
COVID-19 , SARS-CoV-2 , Entropy , Humans , Pandemics , SARS-CoV-2/genetics , Thermodynamics
8.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1732131

ABSTRACT

The angiotensin-converting enzyme II (ACE2) is a multifunctional protein in both health and disease conditions, which serves as a counterregulatory component of RAS function in a cardioprotective role. ACE2 modulation may also have relevance to ovarian cancer, diabetes, acute lung injury, fibrotic diseases, etc. Furthermore, since the outbreak of the coronavirus disease in 2019 (COVID-19), ACE2 has been recognized as the host receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The receptor binding domain of the SARS-CoV-2 S-protein has a strong interaction with ACE2, so ACE2 may be a potent drug target to prevent the virus from invading host cells for anti-COVID-19 drug discovery. In this study, structure- and property-based virtual screening methods were combined to filter natural product databases from ChemDiv, TargetMol, and InterBioScreen to find potential ACE2 inhibitors. The binding affinity between protein and ligands was predicted using both Glide SP and XP scoring functions and the MM-GBSA method. ADME properties were also calculated to evaluate chemical drug-likeness. Then, molecular dynamics (MD) simulations were performed to further explore the binding modes between the highest-potential compounds and ACE2. Results showed that the compounds 154-23-4 and STOCK1N-07141 possess potential ACE2 inhibition activities and deserve further study.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Biological Products/chemistry , Protease Inhibitors/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Biological Products/metabolism , Biological Products/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Databases, Chemical , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Protein Binding , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Thermodynamics
9.
Commun Biol ; 5(1): 160, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1721596

ABSTRACT

The role of dimer formation for the onset of catalytic activity of SARS-CoV-2 main protease (MProWT) was assessed using a predominantly monomeric mutant (MProM). Rates of MProWT and MProM catalyzed hydrolyses display substrate saturation kinetics and second-order dependency on the protein concentration. The addition of the prodrug GC376, an inhibitor of MProWT, to MProM leads to an increase in the dimer population and catalytic activity with increasing inhibitor concentration. The activity reaches a maximum corresponding to a dimer population in which one active site is occupied by the inhibitor and the other is available for catalytic activity. This phase is followed by a decrease in catalytic activity due to the inhibitor competing with the substrate. Detailed kinetics and equilibrium analyses are presented and a modified Michaelis-Menten equation accounts for the results. These observations provide conclusive evidence that dimer formation is coupled to catalytic activity represented by two equivalent active sites.


Subject(s)
Coronavirus 3C Proteases/metabolism , Catalysis , Catalytic Domain , Circular Dichroism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Models, Molecular , Mutation , Pyrrolidines/chemistry , Sulfonic Acids/chemistry , Thermodynamics
10.
Nat Commun ; 13(1): 988, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1713165

ABSTRACT

Translating ribosomes unwind mRNA secondary structures by three basepairs each elongation cycle. Despite the ribosome helicase, certain mRNA stem-loops stimulate programmed ribosomal frameshift by inhibiting translation elongation. Here, using mutagenesis, biochemical and single-molecule experiments, we examine whether high stability of three basepairs, which are unwound by the translating ribosome, is critical for inducing ribosome pauses. We find that encountering frameshift-inducing mRNA stem-loops from the E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) hinders A-site tRNA binding and slows down ribosome translocation by 15-20 folds. By contrast, unwinding of first three basepairs adjacent to the mRNA entry channel slows down the translating ribosome by only 2-3 folds. Rather than high thermodynamic stability, specific length and structure enable regulatory mRNA stem-loops to stall translation by forming inhibitory interactions with the ribosome. Our data provide the basis for rationalizing transcriptome-wide studies of translation and searching for novel regulatory mRNA stem-loops.


Subject(s)
Frameshifting, Ribosomal , RNA, Messenger/chemistry , Bacterial Proteins/genetics , DNA Polymerase III/genetics , Escherichia coli/genetics , Fluorescence Resonance Energy Transfer , HIV/genetics , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Transfer/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Single Molecule Imaging , Thermodynamics
11.
Science ; 375(6584): 1048-1053, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1673339

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies. In the ACE2-binding site, compensating mutations strengthen receptor binding domain (RBD) binding to ACE2. Both the RBD and the apo form of the Omicron spike trimer are thermodynamically unstable. An unusual RBD-RBD interaction in the ACE2-spike complex supports the open conformation and further reinforces ACE2 binding to the spike trimer. A broad-spectrum therapeutic antibody, JMB2002, which has completed a phase 1 clinical trial, maintains neutralizing activity against Omicron. JMB2002 binds to RBD differently from other characterized antibodies and inhibits ACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Cryoelectron Microscopy , Epitopes , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
12.
Pharmacol Res Perspect ; 10(1): e00922, 2022 02.
Article in English | MEDLINE | ID: covidwho-1664440

ABSTRACT

Why a systems analysis view of this pandemic? The current pandemic has inflicted almost unimaginable grief, sorrow, loss, and terror at a global scale. One of the great ironies with the COVID-19 pandemic, particularly early on, is counter intuitive. The speed at which specialized basic and clinical sciences described the details of the damage to humans in COVID-19 disease has been impressive. Equally, the development of vaccines in an amazingly short time interval has been extraordinary. However, what has been less well understood has been the fundamental elements that underpin the progression of COVID-19 in an individual and in populations. We have used systems analysis approaches with human physiology and pharmacology to explore the fundamental underpinnings of COVID-19 disease. Pharmacology powerfully captures the thermodynamic characteristics of molecular binding with an exogenous entity such as a virus and its consequences on the living processes well described by human physiology. Thus, we have documented the passage of SARS-CoV-2 from infection of a single cell to species jump, to tropism, variant emergence and widespread population infection. During the course of this review, the recurrent observation was the efficiency and simplicity of one critical function of this virus. The lethality of SARS-CoV-2 is due primarily to its ability to possess and use a variable surface for binding to a specific human target with high affinity. This binding liberates Gibbs free energy (GFE) such that it satisfies the criteria for thermodynamic spontaneity. Its binding is the prelude to human host cellular entry and replication by the appropriation of host cell constituent molecules that have been produced with a prior energy investment by the host cell. It is also a binding that permits viral tropism to lead to high levels of distribution across populations with newly formed virions. This thermodynamic spontaneity is repeated endlessly as infection of a single host cell spreads to bystander cells, to tissues, to humans in close proximity and then to global populations. The principal antagonism of this process comes from SARS-CoV-2 itself, with its relentless changing of its viral surface configuration, associated with the inevitable emergence of variants better configured to resist immune sequestration and importantly with a greater affinity for the host target and higher infectivity. The great value of this physiological and pharmacological perspective is that it reveals the fundamental thermodynamic underpinnings of SARS-CoV-2 infection.


Subject(s)
COVID-19/etiology , SARS-CoV-2/physiology , Systems Analysis , Thermodynamics , Animals , COVID-19/drug therapy , Chiroptera/virology , Humans , Inflammasomes/physiology , Nasopharynx/virology , Viral Tropism , Virus Internalization
13.
Phys Chem Chem Phys ; 24(5): 3410-3419, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1650366

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among all the potential targets studied for developing drugs and antibodies, the spike (S) protein is the most striking one, which is on the surface of the virus. In contrast with the intensively investigated immunodominant receptor-binding domain (RBD) of the protein, little is known about the neutralizing antibody binding mechanisms of the N-terminal domain (NTD), let alone the effects of NTD mutations on antibody binding and thereby the risk of immune evasion. Based on 400 ns molecular dynamics simulation for 11 NTD-antibody complexes together with other computational approaches in this study, we investigated critical residues for NTD-antibody binding and their detailed mechanisms. The results show that 36 residues on the NTD including R246, Y144, K147, Y248, L249 and P251 are critically involved in the direct interaction of the NTD with many monoclonal antibodies (mAbs), indicating that the viruses harboring these residue mutations may have a high risk of immune evasion. Binding free energy calculations and an interaction mechanism study reveal that R246I, which is present in the Beta (B.1.351/501Y.V2) variant, may have various impacts on current NTD antibodies through abolishing the hydrogen bonds and electrostatic interaction with the antibodies or affecting other interface residues. Therefore, special attention should be paid to the mutations of these key residues in future antibody and vaccine design and development.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Immune Evasion/genetics , Mutation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Thermodynamics
14.
Comput Biol Chem ; 96: 107621, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611674

ABSTRACT

Quantitative physicochemical perspective on life processes has been a great asset, in bioengineering and biotechnology. The quantitative physicochemical approach can be applied to practically all organisms, including viruses, if their chemical composition and thermodynamic properties are known. In this paper, a new method is suggested for determining elemental composition of viruses, based on atom counting. The atom counting method requires knowledge of genetic sequence, protein sequences and protein copy numbers. An algorithm was suggested for a program that finds elemental composition of various viruses (DNA or RNA, enveloped or non-enveloped). Except for the nucleic acid, capsid proteins, lipid bilayer and carbohydrates, this method includes membrane proteins, as well as spike proteins. The atom counting method has been compared with the existing molecular composition and geometric methods on 5 viruses of different morphology, as well as experimentally determined composition of the poliovirus. The atom counting method was found to be more accurate in most cases. The three methods were found to be complementary, since they require different kind of input information. Moreover, since the 3 methods rest on different assumptions, results of one model can be compared to those of the other two.


Subject(s)
Viruses/chemistry , Algorithms , Animals , Carbohydrates/chemistry , Chemical Phenomena , Computational Biology , DNA, Viral/chemistry , DNA, Viral/genetics , Elements , Environmental Science , Humans , Lipids/chemistry , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Thermodynamics , Viral Proteins/chemistry , Viral Proteins/genetics , Viruses/genetics
15.
Phys Chem Chem Phys ; 24(3): 1743-1759, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1606147

ABSTRACT

The outbreak caused by SARS-CoV-2 has received extensive worldwide attention. As the main protease (Mpro) in SARS-CoV-2 has no human homologues, it is feasible to reduce the possibility of targeting the host protein by accidental drugs. Thus, Mpro has been an attractive target of efficient drug design for anti-SARS-CoV-2 treatment. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), and the molecular mechanics-generalized Born surface area (MM-GBSA) method were integrated together to decipher the binding mechanism of four inhibitors masitinib, O6K, FJC and GQU to Mpro. The results indicate that the binding of four inhibitors clearly affects the structural flexibility and internal dynamics of Mpro along with dihedral angle changes of key residues. The analysis of FELs unveils that the stability in the relative orientation and geometric position of inhibitors to Mpro is favorable for inhibitor binding. Residue-based free energy decomposition reveals that the inhibitor-Mpro interaction networks involving hydrogen bonding interactions and hydrophobic interactions provide significant information for the design of potent inhibitors against Mpro. The hot spot residues including H41, M49, F140, N142, G143, C145, H163, H164, M165, E166 and Q189 identified by computational alanine scanning are considered as reliable targets of clinically available inhibitors inhibiting the activities of Mpro.


Subject(s)
Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Proline/chemistry , SARS-CoV-2/drug effects , Viral Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Drug Design , Humans , Molecular Dynamics Simulation , Principal Component Analysis , Proline/pharmacology , Protein Binding , Protein Conformation , Structure-Activity Relationship , Thermodynamics , Viral Protease Inhibitors/pharmacology
16.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580418

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has led to catastrophic damage for global human health. The initial step of SARS-CoV-2 infection is the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Constant evolution of SARS-CoV-2 generates new mutations across its genome including the coding region for the RBD in the spike protein. In addition to the well-known single mutation in the RBD, the recent new mutation strains with an RBD "double mutation" are causing new outbreaks globally, as represented by the delta strain containing RBD L452R/T478K. Although it is considered that the increased transmissibility of double-mutated strains could be attributed to the altered interaction between the RBD and ACE2 receptor, the molecular details remain to be elucidated. Using the methods of molecular dynamics simulation, superimposed structural comparison, free binding energy estimation, and antibody escaping, we investigated the relationship between the ACE2 receptor and the RBD double mutants of L452R/T478K (delta), L452R/E484Q (kappa), and E484K/N501Y (beta, gamma). The results demonstrated that each of the three RBD double mutants altered the RBD structure and enhanced the binding of the mutated RBD to ACE2 receptor. Together with the mutations in other parts of the virus genome, the double mutations increase the transmissibility of SARS-CoV-2 to host cells.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , COVID-19/transmission , COVID-19/virology , Humans , Immune Evasion/genetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Thermodynamics
17.
J Mol Biol ; 434(2): 167357, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1574441

ABSTRACT

The current coronavirus pandemic is exerting a tremendously detrimental impact on global health. The Spike proteins of coronaviruses, responsible for cell receptor binding and viral internalization, possess multiple and frequently conserved disulfide bonds raising the question about their role in these proteins. Here, we present a detailed structural and functional investigation of the disulfide bonds of the SARS-CoV-2 Spike receptor-binding domain (RBD). Molecular dynamics simulations of the RBD predict increased flexibility of the surface loops when the four disulfide bonds of the domain are reduced. This flexibility is particularly prominent for the disulfide bond-containing surface loop (residues 456-490) that participates in the formation of the interaction surface with the Spike cell receptor ACE2. In vitro, disulfide bond reducing agents affect the RBD secondary structure, lower its melting temperature from 52 °C to 36-39 °C and decrease its binding affinity to ACE2 by two orders of magnitude at 37 °C. Consistent with these in vitro findings, the reducing agents tris(2-carboxyethyl)phosphine (TCEP) and dithiothreitol (DTT) were able to inhibit viral replication at low millimolar levels in cell-based assays. Our research demonstrates the mechanism by which the disulfide bonds contribute to the molecular structure of the RBD of the Spike protein, allowing the RBD to execute its viral function.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Disulfides/chemistry , Protein Domains , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites , COVID-19/epidemiology , COVID-19/virology , Circular Dichroism/methods , Humans , Molecular Dynamics Simulation , Pandemics , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Virus Internalization , Virus Replication/physiology
18.
Proteins ; 90(4): 982-992, 2022 04.
Article in English | MEDLINE | ID: covidwho-1557819

ABSTRACT

Recently, multifunctional fish peptides (FWPs) have gained a lot of attention because of their different biological activities. In the present study, three angiotensin-I converting enzyme (ACE-I) inhibitory peptides [Ala-Pro-Asp-Gly (APDG), Pro-Thr-Arg (PTR), and Ala-Asp (AD)] were isolated and characterized from ribbonfish protein hydrolysate (RFPH) and described their mechanism of action on ACE activity. As per the results, peptide PTR showed ≈ 2 and 2.5-fold higher enzyme inhibitory activity (IC50 = 0.643 ± 0.0011 µM) than APDG (IC50 = 1.061 ± 0.0127 µM) and AD (IC50 = 2.046 ± 0.0130 µM). Based on experimental evidence, peptides were used for in silico analysis to check the inhibitory activity of the main protease (PDB: 7BQY) of SARS-CoV-2. The results of the study reveal that PTR (-46.16 kcal/mol) showed higher binding affinity than APDG (-36.80 kcal/mol) and AD (-30.24 kcal/mol) compared with remdesivir (-30.64 kcal/mol). Additionally, physicochemical characteristics of all the isolated peptides exhibited appropriate pharmacological properties and were found to be nontoxic. Besides, 20 ns molecular dynamic simulation study confirms the rigid nature, fewer confirmation variations, and binding stiffness of the peptide PTR with the main protease of SARS-CoV-2. Therefore, the present study strongly suggested that PTR is the perfect substrate for inhibiting the main protease of SARS-CoV-2 through the in silico study, and this potential drug candidate may promote the researcher for future wet lab experiments.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , COVID-19/drug therapy , Fish Proteins/chemistry , Peptides/chemistry , SARS-CoV-2/drug effects , Viral Protease Inhibitors/chemistry , Amino Acid Sequence , Binding Sites , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Hydrolysates/chemistry , Thermodynamics , Viral Protease Inhibitors/pharmacology
19.
J Comput Aided Mol Des ; 35(6): 721-729, 2021 06.
Article in English | MEDLINE | ID: covidwho-1549468

ABSTRACT

We systematically tested the Autodock4 docking program for absolute binding free energy predictions using the host-guest systems from the recent SAMPL6, SAMPL7 and SAMPL8 challenges. We found that Autodock4 behaves surprisingly well, outperforming in many instances expensive molecular dynamics or quantum chemistry techniques, with an extremely favorable benefit-cost ratio. Some interesting features of Autodock4 predictions are revealed, yielding valuable hints on the overall reliability of docking screening campaigns in drug discovery projects.


Subject(s)
Proteins/chemistry , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Reproducibility of Results , Retrospective Studies , Software , Solvents/chemistry , Thermodynamics
20.
Nat Commun ; 12(1): 6977, 2021 11 30.
Article in English | MEDLINE | ID: covidwho-1545609

ABSTRACT

Despite an unprecedented global gain in knowledge since the emergence of SARS-CoV-2, almost all mechanistic knowledge related to the molecular and cellular details of viral replication, pathology and virulence has been generated using early prototypic isolates of SARS-CoV-2. Here, using atomic force microscopy and molecular dynamics, we investigated how these mutations quantitatively affected the kinetic, thermodynamic and structural properties of RBD-ACE2 complex formation. We observed for several variants of concern a significant increase in the RBD-ACE2 complex stability. While the N501Y and E484Q mutations are particularly important for the greater stability, the N501Y mutation is unlikely to significantly affect antibody neutralization. This work provides unprecedented atomistic detail on the binding of SARS-CoV-2 variants and provides insight into the impact of viral mutations on infection-induced immunity.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/pharmacology , COVID-19/therapy , COVID-19/virology , Humans , Kinetics , Microscopy, Atomic Force , Molecular Dynamics Simulation , Mutation , Protein Binding/drug effects , Protein Interaction Domains and Motifs , Protein Stability , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL