Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Int J Environ Res Public Health ; 18(12)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1278490


Reindeer husbandry is essential for the livelihood and culture of indigenous people in the Arctic. Parts of the herding areas are also used as pastures for farm animals, facilitating potential transmission of viruses between species. Following the Covid-19 pandemic, viruses circulating in the wild are receiving increased attention, since they might pose a potential threat to human health. Climate change will influence the prevalence of infectious diseases of both humans and animals. The aim of this study was to detect known and previously unknown viruses in Eurasian tundra reindeer. In total, 623 nasal and 477 rectal swab samples were collected from reindeer herds in Fennoscandia, Iceland, and Eastern Russia during 2016-2019. Next-generation sequencing analysis and BLAST-homology searches indicated the presence of viruses of domesticated and wild animals, such as bovine viral diarrhea virus, bovine papillomavirus, alcephaline herpesvirus 1 and 2, deer mastadenovirus B, bovine rotavirus, and roe deer picobirnavirus. Several viral species previously found in reindeer and some novel species were detected, although the clinical relevance of these viruses in reindeer is largely unknown. These results indicate that it should be possible to find emerging viruses of relevance for both human and animal health using reindeer as a sentinel species.

COVID-19 , Deer , Reindeer , Animals , Arctic Regions , High-Throughput Nucleotide Sequencing , Humans , Iceland , Pandemics , Russia , SARS-CoV-2 , Tundra
Sci Rep ; 11(1): 9849, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1223110


Several studies have examined the transmission dynamics of the novel COVID-19 disease in different parts of the world. Some have reported relationships with various environmental variables, suggesting that spread of the disease is enhanced in colder and drier climates. However, evidence is still scarce and mostly limited to a few countries, particularly from Asia. We examined the potential role of multiple environmental variables in COVID-19 infection rate [measured as mean relative infection rate = (number of infected inhabitants per week / total population) × 100.000) from February 23 to August 16, 2020 across 360 cities of Chile. Chile has a large climatic gradient (≈ 40º of latitude, ≈ 4000 m of altitude and 5 climatic zones, from desert to tundra), but all cities share their social behaviour patterns and regulations. Our results indicated that COVID-19 transmission in Chile was mostly related to three main climatic factors (minimum temperature, atmospheric pressure and relative humidity). Transmission was greater in colder and drier cities and when atmospheric pressure was lower. The results of this study support some previous findings about the main climatic determinants of COVID-19 transmission, which may be useful for decision-making and management of the disease.

COVID-19/transmission , Environment , SARS-CoV-2/isolation & purification , Seasons , Altitude , Atmospheric Pressure , COVID-19/epidemiology , COVID-19/virology , Chile/epidemiology , Humans , Humidity , Pandemics , SARS-CoV-2/physiology , Temperature , Tundra