Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add filters

Document Type
Year range
1.
Mayo Clin Proc ; 95(7): 1354-1368, 2020 07.
Article in English | MEDLINE | ID: covidwho-1500136

ABSTRACT

OBJECTIVE: To explore the transcriptomic differences between patients with hypertrophic cardiomyopathy (HCM) and controls. PATIENTS AND METHODS: RNA was extracted from cardiac tissue flash frozen at therapeutic surgical septal myectomy for 106 patients with HCM and 39 healthy donor hearts. Expression profiling of 37,846 genes was performed using the Illumina Human HT-12v3 Expression BeadChip. All patients with HCM were genotyped for pathogenic variants causing HCM. Technical validation was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. This study was started on January 1, 1999, and final analysis was completed on April 20, 2020. RESULTS: Overall, 22% of the transcriptome (8443 of 37,846 genes) was expressed differentially between HCM and control tissues. Analysis by genotype revealed that gene expression changes were similar among genotypic subgroups of HCM, with only 4% (1502 of 37,846) to 6% (2336 of 37,846) of the transcriptome exhibiting differential expression between genotypic subgroups. The qRT-PCR confirmed differential expression in 92% (11 of 12 genes) of tested transcripts. Notably, in the context of coronavirus disease 2019 (COVID-19), the transcript for angiotensin I converting enzyme 2 (ACE2), a negative regulator of the angiotensin system, was the single most up-regulated gene in HCM (fold-change, 3.53; q-value =1.30×10-23), which was confirmed by qRT-PCR in triplicate (fold change, 3.78; P=5.22×10-4), and Western blot confirmed greater than 5-fold overexpression of ACE2 protein (fold change, 5.34; P=1.66×10-6). CONCLUSION: More than 20% of the transcriptome is expressed differentially between HCM and control tissues. Importantly, ACE2 was the most up-regulated gene in HCM, indicating perhaps the heart's compensatory effort to mount an antihypertrophic, antifibrotic response. However, given that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 for viral entry, this 5-fold increase in ACE2 protein may confer increased risk for COVID-19 manifestations and outcomes in patients with increased ACE2 transcript expression and protein levels in the heart.


Subject(s)
Betacoronavirus , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/virology , Coronavirus Infections/complications , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2 , COVID-19 , Cardiomyopathy, Hypertrophic/metabolism , Case-Control Studies , Child , Genotype , Humans , Middle Aged , Myocardium/metabolism , Pandemics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Young Adult
2.
J Am Soc Nephrol ; 32(1): 99-114, 2021 01.
Article in English | MEDLINE | ID: covidwho-1496673

ABSTRACT

BACKGROUND: C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS: A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS: The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS: The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.


Subject(s)
Complement C3/genetics , Disease Models, Animal , Glomerulonephritis, Membranoproliferative/genetics , Kidney Diseases/genetics , Animals , Complement C3/metabolism , Complement Pathway, Alternative/genetics , Exons , Gene Expression Regulation , Glomerulonephritis, Membranoproliferative/metabolism , Humans , Kidney Diseases/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Phenotype , Polymorphism, Single Nucleotide , Renal Insufficiency/genetics , Renal Insufficiency/metabolism
3.
J Mol Liq ; 333: 115934, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1386336

ABSTRACT

The binding and displacement interaction of colchicine and azithromycin to the model transport protein bovine serum albumin (BSA) was evaluated in this study. Azithromycin, a macrolide antibiotic, has antiviral properties and hence, has been used concomitantly with hydroxychloroquine against SARS-CoV-2. Colchicine, a natural plant product is used to treat and prevent acute gout flares. Some macrolide antibiotics are reported to have fatal drug-drug interactions with colchicine. The displacement interaction between colchicine and azithromycin on binding to BSA was evaluated using spectroscopic techniques, molecular docking and molecular dynamic simulation studies. The binding constant recorded for the binary system BSA-colchicine was 7.44 × 104 whereas, the binding constant for the ternary system BSA-colchicine in presence of azithromycin was 7.38 × 104 and were similar. Azithromycin didn't bind to BSA neither did it interfere in binding of colchicine. The results from molecular docking studies also led to a similar conclusion that azithromycin didn't interfere in the binding of colchicine to BSA. These findings are important since there is possibility of serious adverse event with co-administration of colchicine and azithromycin in patients with underlying gouty arthritis and these patients need to be continuously monitored for colchicine toxicity.

4.
iScience ; 24(2): 102096, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1385756

ABSTRACT

CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01.

5.
Int J Antimicrob Agents ; 57(2): 106272, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1385674

ABSTRACT

INTRODUCTION: Genomic alterations in a viral genome can lead to either better or worse outcome and identifying these mutations is of utmost importance. Here, we correlated protein-level mutations in the SARS-CoV-2 virus to clinical outcome. METHODS: Mutations in viral sequences from the GISAID virus repository were evaluated by using "hCoV-19/Wuhan/WIV04/2019" as the reference. Patient outcomes were classified as mild disease, hospitalization and severe disease (death or documented treatment in an intensive-care unit). Chi-square test was applied to examine the association between each mutation and patient outcome. False discovery rate was computed to correct for multiple hypothesis testing and results passing FDR cutoff of 5% were accepted as significant. RESULTS: Mutations were mapped to amino acid changes for 3,733 non-silent mutations. Mutations correlated to mild outcome were located in the ORF8, NSP6, ORF3a, NSP4, and in the nucleocapsid phosphoprotein N. Mutations associated with inferior outcome were located in the surface (S) glycoprotein, in the RNA dependent RNA polymerase, in ORF3a, NSP3, ORF6 and N. Mutations leading to severe outcome with low prevalence were found in the ORF3A and in NSP7 proteins. Four out of 22 of the most significant mutations mapped onto a 10 amino acid long phosphorylated stretch of N indicating that in spite of obvious sampling restrictions the approach can find functionally relevant sites in the viral genome. CONCLUSIONS: We demonstrate that mutations in the viral genes may have a direct correlation to clinical outcome. Our results help to quickly identify SARS-CoV-2 infections harboring mutations related to severe outcome.


Subject(s)
COVID-19/drug therapy , COVID-19/etiology , Mutation , SARS-CoV-2/genetics , Coronavirus Nucleocapsid Proteins/genetics , Female , Hospitalization , Humans , Male , Mutation Rate , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viroporin Proteins/genetics
7.
Int J Mol Sci ; 21(19)2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-1389385

ABSTRACT

Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.


Subject(s)
Immunity, Innate , Mitochondrial Membrane Transport Proteins/chemistry , Animals , Betacoronavirus/genetics , Binding Sites , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Open Reading Frames , Protein Binding , Protein Transport , SARS-CoV-2
8.
Chem Sci ; 11(36): 9904-9909, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-1387499

ABSTRACT

We present a near-term treatment strategy to tackle pandemic outbreaks of coronaviruses with no specific drugs/vaccines by combining evolutionary and physical principles to identify conserved viral domains containing druggable Zn-sites that can be targeted by clinically safe Zn-ejecting compounds. By applying this strategy to SARS-CoV-2 polyprotein-1ab, we predicted multiple labile Zn-sites in papain-like cysteine protease (PLpro), nsp10 transcription factor, and nsp13 helicase. These are attractive drug targets because they are highly conserved among coronaviruses and play vital structural/catalytic roles in viral proteins indispensable for virus replication. We show that five Zn-ejectors can release Zn2+ from PLpro and nsp10, and clinically-safe disulfiram and ebselen can not only covalently bind to the Zn-bound cysteines in both proteins, but also inhibit PLpro protease. We propose combining disulfiram/ebselen with broad-spectrum antivirals/drugs to target different conserved domains acting at various stages of the virus life cycle to synergistically inhibit SARS-CoV-2 replication and reduce the emergence of drug resistance.

9.
Brief Bioinform ; 22(2): 1430-1441, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343652

ABSTRACT

The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Genes, Viral , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Transcriptome
10.
Biochimie ; 179: 237-246, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1326916

ABSTRACT

The anti-malarial drug Chloroquine (CQ) and its derivative hydroxychloroquine have shown antiviral activities in vitro against many viruses, including coronaviruses, dengue virus and the biosafety level 4 Nipah and Hendra paramyxoviruses. The in vivo efficacy of CQ in the treatment of COVID-19 is currently a matter of debate. CQ is a lysosomotrophic compound that accumulates in lysosomes, as well as in food vacuoles of Plasmodium falciparum. In the treatment of malaria, CQ impairs the digestion and growth of the parasite by increasing the pH of the food vacuole. Similarly, it is assumed that the antiviral effects of CQ results from the increase of lysosome pH and the inhibition of acidic proteases involved in the maturation of virus fusion protein. CQ has however other effects, among which phospholipidosis, characterized by the accumulation of multivesicular bodies within the cell. The increase in phospholipid species particularly concerns bis(monoacylglycero)phosphate (BMP), a specific lipid of late endosomes involved in vesicular trafficking and pH-dependent vesicle budding. It was shown previously that drugs like progesterone, the cationic amphiphile U18666A and the phospholipase inhibitor methyl arachidonyl fluoro phosphonate (MAFP) induce the accumulation of BMP in THP-1 cells and decrease cell infection by human immunodeficiency virus. HIV viral particles were found to be retained into large endosomal-type vesicles, preventing virus spreading. Since BMP was also reported to favour virus entry through hijacking of the endocytic pathway, we propose here that BMP could play a dual role in viral infection, with its antiviral effects triggered by lysosomotropic drugs like CQ.


Subject(s)
Antiviral Agents/pharmacology , Chloroquine/pharmacology , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Lysophospholipids/metabolism , Monoglycerides/metabolism , SARS-CoV-2/drug effects , Humans , SARS-CoV-2/physiology
11.
Antioxid Redox Signal ; 35(13): 1081-1092, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1306508

ABSTRACT

Aims: Influenza A virus hemagglutinin (HA) binding to sialic acid on lung epithelial cells triggers membrane fusion and infection. Host thiol isomerases have been shown to play a role in influenza A virus infection, and we hypothesized that this role involved manipulation of disulfide bonds in HA. Results: Analysis of HA crystal structures revealed that three of the six HA disulfides occur in high-energy conformations and four of the six bonds can exist in unformed states, suggesting that the disulfide landscape of HA is generally strained and the bonds may be labile. We measured the redox state of influenza A virus HA disulfide bonds and their susceptibility to cleavage by vascular thiol isomerases. Using differential cysteine alkylation and mass spectrometry, we show that all six HA disulfide bonds exist in unformed states in ∼1 in 10 recombinant and viral surface HA molecules. Four of the six H1 and H3 HA bonds are cleaved by the vascular thiol isomerases, thioredoxin and protein disulphide isomerase, in recombinant proteins, which correlated with surface exposure of the disulfides in crystal structures. In contrast, viral surface HA disulfide bonds are impervious to five different vascular thiol isomerases. Innovation: It has been assumed that the disulfide bonds in mature HA protein are intact and inert. We show that all six HA disulfide bonds can exist in unformed states. Conclusion: These findings indicate that influenza A virus HA disulfides are naturally labile but not substrates for thiol isomerases when expressed on the viral surface.

12.
Viruses ; 12(10)2020 10 18.
Article in English | MEDLINE | ID: covidwho-1305818

ABSTRACT

Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.


Subject(s)
Copper/metabolism , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Prions/metabolism , Zinc/metabolism , Computational Biology , Meta-Analysis as Topic , Molecular Dynamics Simulation , Neurodegenerative Diseases/virology , Nucleocapsid/genetics , Nucleocapsid Proteins/genetics , Prions/genetics , Protein Domains , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: covidwho-1299445

ABSTRACT

Antithrombin (AT) is a natural anticoagulant that interacts with activated proteases of the coagulation system and with heparan sulfate proteoglycans (HSPG) on the surface of cells. The protein, which is synthesized in the liver, is also essential to confer the effects of therapeutic heparin. However, AT levels drop in systemic inflammatory diseases. The reason for this decline is consumption by the coagulation system but also by immunological processes. Aside from the primarily known anticoagulant effects, AT elicits distinct anti-inflammatory signaling responses. It binds to structures of the glycocalyx (syndecan-4) and further modulates the inflammatory response of endothelial cells and leukocytes by interacting with surface receptors. Additionally, AT exerts direct antimicrobial effects: depending on AT glycosylation it can bind to and perforate bacterial cell walls. Peptide fragments derived from proteolytic degradation of AT exert antibacterial properties. Despite these promising characteristics, therapeutic supplementation in inflammatory conditions has not proven to be effective in randomized control trials. Nevertheless, new insights provided by subgroup analyses and retrospective trials suggest that a recommendation be made to identify the patient population that would benefit most from AT substitution. Recent experiment findings place the role of various AT isoforms in the spotlight. This review provides an overview of new insights into a supposedly well-known molecule.


Subject(s)
Antithrombins/pharmacology , Disease Resistance/drug effects , Disease Susceptibility , Host-Pathogen Interactions , Inflammation/etiology , Inflammation/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antithrombins/therapeutic use , Biomarkers , Disease Management , Host-Pathogen Interactions/drug effects , Humans , Immunomodulation/drug effects , Inflammation/drug therapy , Inflammation/pathology , Organ Specificity , Signal Transduction/drug effects
14.
Crit Rev Anal Chem ; : 1-23, 2021 Jun 17.
Article in English | MEDLINE | ID: covidwho-1276053

ABSTRACT

Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.

15.
J Am Soc Mass Spectrom ; 32(7): 1618-1630, 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1267989

ABSTRACT

Coronavirus (CoV) nonstructural proteins (nsps) assemble to form the replication-transcription complex (RTC) responsible for viral RNA synthesis. nsp7 and nsp8 are important cofactors of the RTC, as they interact and regulate the activity of RNA-dependent RNA polymerase and other nsps. To date, no structure of the full-length SARS-CoV-2 nsp7:nsp8 complex has been published. The current understanding of this complex is based on structures from truncated constructs, with missing electron densities, or from related CoV species where SARS-CoV-2 nsp7 and nsp8 share upward of 90% sequence identity. Despite available structures solved using crystallography and cryo-EM representing detailed static snapshots of the nsp7:nsp8 complex, it is evident that the complex has a high degree of structural plasticity. However, relatively little is known about the conformational dynamics of the individual proteins and how they complex to interact with other nsps. Here, the solution-based structural proteomic techniques, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and cross-linking mass spectrometry (XL-MS), illuminate the dynamics of SARS-CoV-2 full-length nsp7 and nsp8 proteins and the nsp7:nsp8 protein complex. Results presented from the two techniques are complementary and validate the interaction surfaces identified from the published three-dimensional heterotetrameric crystal structure of the SARS-CoV-2 truncated nsp7:nsp8 complex. Furthermore, mapping of XL-MS data onto higher-order complexes suggests that SARS-CoV-2 nsp7 and nsp8 do not assemble into a hexadecameric structure as implied by the SARS-CoV full-length nsp7:nsp8 crystal structure. Instead, our results suggest that the nsp7:nsp8 heterotetramer can dissociate into a stable dimeric unit that might bind to nsp12 in the RTC without significantly altering nsp7-nsp8 interactions.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Proteomics/methods , Viral Nonstructural Proteins/chemistry , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Models, Molecular , Protein Conformation , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
16.
Nat Commun ; 12(1): 3433, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1261998

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has created global health and economic emergencies. SARS-CoV-2 viruses promote their own spread and virulence by hijacking human proteins, which occurs through viral protein recognition of human targets. To understand the structural basis for SARS-CoV-2 viral-host protein recognition, here we use cryo-electron microscopy (cryo-EM) to determine a complex structure of the human cell junction protein PALS1 and SARS-CoV-2 viral envelope (E) protein. Our reported structure shows that the E protein C-terminal DLLV motif recognizes a pocket formed exclusively by hydrophobic residues from the PDZ and SH3 domains of PALS1. Our structural analysis provides an explanation for the observation that the viral E protein recruits PALS1 from lung epithelial cell junctions. In addition, our structure provides novel targets for peptide- and small-molecule inhibitors that could block the PALS1-E interactions to reduce E-mediated virulence.


Subject(s)
Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/metabolism , Intercellular Junctions/metabolism , Membrane Proteins/metabolism , Nucleoside-Phosphate Kinase/metabolism , Amino Acid Sequence , Coronavirus Envelope Proteins/ultrastructure , Cryoelectron Microscopy , Humans , Protein Domains , SARS-CoV-2/physiology , Structural Homology, Protein , Structure-Activity Relationship
17.
Int J Biol Macromol ; 185: 20-30, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1260751

ABSTRACT

Chitosan-loaded nanomedicines provide a greater opportunity for the treatment of respiratory diseases. Natural biopolymer chitosan and its derivatives have a large number of proven pharmacological actions like antioxidant, wound healing, immuno-stimulant, hypocholesterolemic, antimicrobial, obesity treatment, anti-inflammatory, anticancer, bone tissue engineering, antifungal, regenerative medicine, anti-diabetic and mucosal adjuvant, etc. which attracted its use in the pharmaceutical industry. As compared to other polysaccharides, chitosan has excellent mucoadhesive characteristics, less viscous, easily modified into the chemical and biological molecule and gel-forming property due to which the drugs retain in the respiratory tract for a longer period of time providing enhanced therapeutic action of the drug. Chitosan-based nanomedicines would have the greatest effect when used to transport poor water soluble drugs, macromolecules like proteins, and peptides through the lungs. In this review, we highlight and discuss the role of chitosan and its nanomedicines in the treatment of chronic respiratory diseases such as pneumonia, asthma, COPD, lung cancer, tuberculosis, and COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/epidemiology , Chitosan/therapeutic use , Drug Carriers/therapeutic use , Nanomedicine , SARS-CoV-2 , Animals , Humans
18.
Front Pharmacol ; 12: 619588, 2021.
Article in English | MEDLINE | ID: covidwho-1256397

ABSTRACT

Downregulation of drug metabolizing enzymes and transporters by proinflammatory mediators in hepatocytes, enterocytes and renal tubular epithelium is an established mechanism affecting pharmacokinetics. Emerging evidences indicate that vascular endothelial cell expression of drug metabolizing enzymes and transporters may regulate pharmacokinetic pathways in heart to modulate local drug bioavailability and toxicity. However, whether inflammation regulates pharmacokinetic pathways in human cardiac vascular endothelial cells remains largely unknown. The lipid modified protein Wnt5A is emerging as a critical mediator of proinflammatory responses and disease severity in sepsis, hypertension and COVID-19. In the present study, we employed transcriptome profiling and gene ontology analyses to investigate the regulation of expression of drug metabolizing enzymes and transporters by Wnt5A in human coronary artery endothelial cells. Our study shows for the first time that Wnt5A induces the gene expression of CYP1A1 and CYP1B1 enzymes involved in phase I metabolism of a broad spectrum of drugs including chloroquine (the controversial drug for COVID-19) that is known to cause toxicity in myocardium. Further, the upregulation of CYP1A1 and CYP1B1 expression is preserved even during inflammatory crosstalk between Wnt5A and the prototypic proinflammatory IL-1ß in human coronary artery endothelial cells. These findings stimulate further studies to test the critical roles of vascular endothelial cell CYP1A1 and CYP1B1, and the potential of vascular-targeted therapy with CYP1A1/CYP1B1 inhibitors in modulating myocardial pharmacokinetics in Wnt5A-associated inflammatory and cardiovascular diseases.

19.
J Proteome Res ; 20(7): 3404-3413, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1253877

ABSTRACT

SARS-CoV-2 infection has become a major public health burden and affects many organs including lungs, kidneys, the liver, and the brain. Although the virus is readily detected and diagnosed using nasopharyngeal swabs by reverse transcriptase polymerase chain reaction (RT-PCR), detection of its presence in body fluids is fraught with difficulties. A number of published studies have failed to detect viral RNA by RT-PCR methods in urine. Although microbial identification in clinical microbiology using mass spectrometry is undertaken after culture, here we undertook a mass spectrometry-based approach that employed an enrichment step to capture and detect SARS-CoV-2 nucleocapsid protein directly from urine of COVID-19 patients without any culture. We detected SARS-CoV-2 nucleocapsid protein-derived peptides from 13 out of 39 urine samples. Further, a subset of COVID-19 positive and COVID-19 negative urine samples validated by mass spectrometry were used for the quantitative proteomics analysis. Proteins with increased abundance in urine of SARS-CoV-2 positive individuals were enriched in the acute phase response, regulation of complement system, and immune response. Notably, a number of renal proteins such as podocin (NPHS2), an amino acid transporter (SLC36A2), and sodium/glucose cotransporter 5 (SLC5A10), which are intimately involved in normal kidney function, were decreased in the urine of COVID-19 patients. Overall, the detection of viral antigens in urine using mass spectrometry and alterations of the urinary proteome could provide insights into understanding the pathogenesis of COVID-19.


Subject(s)
Body Fluids , COVID-19 , Antigens, Viral , Humans , Immunity , Mass Spectrometry , Phosphoproteins , RNA, Viral , SARS-CoV-2
20.
Mol Pharmacol ; 100(2): 155-169, 2021 08.
Article in English | MEDLINE | ID: covidwho-1242189

ABSTRACT

The 14-3-3 proteins constitute a family of adaptor proteins with many binding partners and biological functions, and they are considered promising drug targets in cancer and neuropsychiatry. By screening 1280 small-molecule drugs using differential scanning fluorimetry (DSF), we found 15 compounds that decreased the thermal stability of 14-3-3ζ Among these compounds, ebselen was identified as a covalent, destabilizing ligand of 14-3-3 isoforms ζ, ε, γ, and η Ebselen bonding decreased 14-3-3ζ binding to its partner Ser19-phosphorylated tyrosine hydroxylase. Characterization of site-directed mutants at cysteine residues in 14-3-3ζ (C25, C94, and C189) by DSF and mass spectroscopy revealed covalent modification by ebselen of all cysteines through a selenylsulfide bond. C25 appeared to be the preferential site of ebselen interaction in vitro, whereas modification of C94 was the main determinant for protein destabilization. At therapeutically relevant concentrations, ebselen and ebselen oxide caused decreased 14-3-3 levels in SH-SY5Y cells, accompanied with an increased degradation, most probably by the ubiquitin-dependent proteasome pathway. Moreover, ebselen-treated zebrafish displayed decreased brain 14-3-3 content, a freezing phenotype, and reduced mobility, resembling the effects of lithium, consistent with its proposed action as a safer lithium-mimetic drug. Ebselen has recently emerged as a promising drug candidate in several medical areas, such as cancer, neuropsychiatric disorders, and infectious diseases, including coronavirus disease 2019. Its pleiotropic actions are attributed to antioxidant effects and formation of selenosulfides with critical cysteine residues in proteins. Our work indicates that a destabilization of 14-3-3 may affect the protein interaction networks of this protein family, contributing to the therapeutic potential of ebselen. SIGNIFICANCE STATEMENT: There is currently great interest in the repurposing of established drugs for new indications and therapeutic targets. This study shows that ebselen, which is a promising drug candidate against cancer, bipolar disorder, and the viral infection coronavirus disease 2019, covalently bonds to cysteine residues in 14-3-3 adaptor proteins, triggering destabilization and increased degradation in cells and intact brain tissue when used in therapeutic concentrations, potentially explaining the behavioral, anti-inflammatory, and antineoplastic effects of this drug.


Subject(s)
14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Cysteine/genetics , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , 14-3-3 Proteins/genetics , Animals , Binding Sites/drug effects , Brain/metabolism , Cell Line , Circular Dichroism , Down-Regulation , Female , Humans , Male , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding/drug effects , Protein Conformation , Protein Stability/drug effects , Tyrosine 3-Monooxygenase/metabolism , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...