Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Epidemiol Infect ; 148: e267, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-912841


Previous research on respiratory infection transmission among university students has primarily focused on influenza. In this study, we explore potential transmission events for multiple respiratory pathogens in a social contact network of university students. University students residing in on-campus housing (n = 590) were followed for the development of influenza-like illness for 10-weeks during the 2012-13 influenza season. A contact network was built using weekly self-reported contacts, class schedules, and housing information. We considered a transmission event to have occurred if students were positive for the same pathogen and had a network connection within a 14-day period. Transmitters were individuals who had onset date prior to their infected social contact. Throat and nasal samples were analysed for multiple viruses by RT-PCR. Five viruses were involved in 18 transmission events (influenza A, parainfluenza virus 3, rhinovirus, coronavirus NL63, respiratory syncytial virus). Transmitters had higher numbers of co-infections (67%). Identified transmission events had contacts reported in small classes (33%), dormitory common areas (22%) and dormitory rooms (17%). These results suggest that targeting person-to-person interactions, through measures such as isolation and quarantine, could reduce transmission of respiratory infections on campus.

Respiratory Tract Infections/virology , Social Networking , Students , Virus Diseases/transmission , Coinfection/virology , Female , Housing , Humans , Male , Michigan , Respiratory Tract Infections/transmission , Universities
Front Microbiol ; 11: 1990, 2020.
Article in English | MEDLINE | ID: covidwho-776877


As the world faces the challenge of the COVID-19 pandemic, it has become an urgent need of the hour to understand how our immune system sense and respond to RNA viruses that are often life-threatening. While most vaccine strategies for these viruses are developed around a programmed antibody response, relatively less attention is paid to our innate immune defenses that can determine the outcome of a viral infection via the production of antiviral cytokines like Type I Interferons. However, it is becoming increasingly evident that the "cytokine storm" induced by aberrant activation of the innate immune response against a viral pathogen may sometimes offer replicative advantage to the virus thus promoting disease pathogenesis. Thus, it is important to fine tune the responses of the innate immune network that can be achieved via a deeper insight into the candidate molecules involved. Several pattern recognition receptors (PRRs) like the Toll like receptors (TLRs), NOD-like receptors (NLRs), and the retinoic acid inducible gene-I (RIG-I) like receptors (RLRs) recognize cytosolic RNA viruses and mount an antiviral immune response. RLRs recognize invasive viral RNA produced during infection and mediate the induction of Type I Interferons via the mitochondrial antiviral signaling (MAVS) molecule. It is an intriguing fact that the mitochondrion, one of the cell's most vital organelle, has evolved to be a central hub in this antiviral defense. However, cytokine responses and interferon signaling via MAVS signalosome at the mitochondria must be tightly regulated to prevent overactivation of the immune responses. This review focuses on our current understanding of the innate immune sensing of the host mitochondria by the RLR-MAVS signalosome and its specificity against some of the emerging/re-emerging RNA viruses like Ebola, Zika, Influenza A virus (IAV), and severe acute respiratory syndrome-coronavirus (SARS-CoV) that may expand our understanding for novel pharmaceutical development.