Реферат
Objectives: The low COVID-19 vaccine uptake rate among pregnant women is mainly due to safety concerns about COVID-19 vaccines due to limited safety evidence. Our goal was to evaluate the safety of COVID-19 vaccination during pregnancy with up-to-date evidence. Methods: A comprehensive search of MEDLINE, EMBASE, the Cochrane Library, and clinicaltrials.gov was performed on April 5th, 2022, and updated on May 25th, 2022. Studies evaluating the association of COVID-19 vaccination during pregnancy with adverse maternal and neonatal outcomes were included. Two reviewers independently performed the risk of bias assessment and data extraction. Inverse variance random effect meta-analyses were performed to pool outcome data. Results: Forty-three observational studies were included. COVID-19 vaccination [96,384 (73.9%) BNT162b2, 30,889 (23.7%) mRNA-1273, and 3,172 (2.4%) other types] during pregnancy [23,721 (18.3%) in the first trimester, 52,778 (40.5%) in the second trimester, and 53,886 (41.2%) in the third trimester].was associated with reduced risks of stillbirth or neonatal death (OR, 0.74; 95% CI, 0.60-0.92). Sensitivity analysis restricted to studies in participants without COVID-19 showed that the pooled effect was not robust. COVID-19 vaccination during pregnancy was not associated with congenital anomalies (OR, 0.83; 95% CI, 0.63-1.08), preterm birth (OR, 0.98; 95% CI, 0.90-1.06), NICU admission or hospitalization (OR, 0.94; 95% CI, 0.84-1.04), an Apgar score at 5 min <7 (OR, 0.93; 95% CI, 0.86-1.01), low birth weight (OR, 1.00; 95% CI, 0.88-1.14), miscarriage (OR, 0.99; 95% CI, 0.88-1.11), cesarean delivery (OR, 1.07; 95% CI, 0.96-1.19), or postpartum hemorrhage (OR, 0.91; 95% CI, 0.81-1.01). Conclusions: COVID-19 vaccination during pregnancy was not associated with any of the adverse neonatal or maternal outcomes studied. Interpretation of study findings is limited by the types and timing of vaccination. The vaccinations in our study received during pregnancy were primarily mRNA vaccines administered in the second and third trimester. Future RCTs and meta-analysis are warranted to evaluate the efficacy and long-term effects of the COVID-19 vaccines. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022322525, identifier: PROSPERO, CRD42022322525.
Тема - темы
COVID-19 , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , COVID-19 Vaccines , Premature Birth/epidemiology , Pregnancy Outcome , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , VaccinationРеферат
The immune responses of liver transplant (LT) recipients after the third boost of the BNT162b2mRNA vaccine improved. This study evaluates the durability of the immune response of LT recipients after the third boost, its predictors, and the impact of emerging variants. The receptor-binding domain IgG was determined at median times of 22 (first test) and 133 days (second test) after the administration of the third boost. IgG antibody titers > 21.4 BAU/mL were defined as a positive response. The neutralization efficacies of the vaccine against the wild-type, Omicron, and Delta variants were compared in the first test. The 59 LT recipients were of a median age of 61 years (range 25−82); 53.5% were male. Following administration of the third dose, the positive immune response decreased from 81.4% to 76.3% between the first and second tests, respectively, (p < 0.0001). The multivariate analysis identified CNI monotherapy (p = 0.02) and hemoglobin > 12 g/dL (p = 0.02) as independent predictors of a maintained positive immune response 133 days after the third dose. The geometric mean titers of Omicron neutralization were significantly lower than the wild-type and Delta virus (21, 137, 128, respectively; p < 0.0001). The immune response after the third BNT162b2mRNA vaccine dose decreased significantly in LT recipients. Further studies are required to evaluate the efficacy of the fourth vaccine dose and the durability of the immune response.
Тема - темы
Liver Transplantation , Vaccines , Male , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Female , BNT162 Vaccine , Multivariate Analysis , Antibodies, Viral , Antibodies, Neutralizing , Transplant RecipientsРеферат
OBJECTIVE: Limited data exist regarding the immune benefits of fourth COVID-19 vaccine doses in people with HIV (PWH) receiving antiretroviral therapy (ART), particularly now that most have experienced a SARS-CoV-2 infection. We quantified wild-type, Omicron-BA.5 and Omicron-BQ.1-specific neutralization up to 1 month post-fourth COVID-19 vaccine dose in 63 (19 SARS-CoV-2-naive and 44 SARS-CoV-2-experienced) PWH. DESIGN: A longitudinal observational cohort. METHODS: Quantification of wild-type-, Omicron-BA.5, and Omicron-BQ.1-specific neutralization using live virus assays. RESULTS: Participants received monovalent (44%) and bivalent (56%) mRNA fourth doses. In COVID-19-naive PWH, fourth doses enhanced wild-type and Omicron-BA.5-specific neutralization modestly above three-dose levels ( P â=â0.1). In COVID-19-experienced PWH, fourth doses enhanced wild-type specific neutralization modestly ( P â=â0.1) and BA.5-specific neutralization substantially ( P â=â0.002). Consistent with humoral benefits of 'hybrid' immunity, COVID-19-experienced PWH exhibited the highest neutralization post-fourth dose, wherein those with Omicron-era infections displayed higher wild-type specific ( P â=â0.04) but similar BA.5 and BQ.1-specific neutralization than those with pre-Omicron-era infections. Nevertheless, BA.5-specific neutralization was significantly below wild-type in everyone regardless of COVID-19 experience, with BQ.1-specific neutralization lower still (both P â<â0.0001). In multivariable analyses, fourth dose valency did not affect neutralization magnitude. Rather, an mRNA-1273 fourth dose (versus a BNT162b2 one) was the strongest correlate of wild-type specific neutralization, while prior COVID-19, regardless of pandemic era, was the strongest correlate of BA.5 and BQ.1-specific neutralization post-fourth dose. CONCLUSION: Fourth COVID-19 vaccine doses, irrespective of valency, benefit PWH regardless of prior SARS-CoV-2 infection. Results support recommendations that all adults receive a fourth COVID-19 vaccine dose within 6âmonths of their third dose (or their most recent SARS-CoV-2 infection).
Тема - темы
COVID-19 , HIV Infections , Adult , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , BNT162 Vaccine , HIV Infections/complications , HIV Infections/drug therapy , Antibodies, Neutralizing , Antibodies, ViralРеферат
NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.
Тема - темы
COVID-19 Vaccines , COVID-19 , Humans , Animals , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , RNA, Messenger/genetics , Antibodies, ViralРеферат
PURPOSE: This study assessed the vertigo/dizziness in patients following COVID-19 vaccination. PATIENTS AND METHODS: From July 2021 to June 2022, totaling 50 patients with dizzy spells following COVID-19 vaccination by AZ (AstraZeneca-Oxford University, AZD1222), BNT (Pfizer-BioNTech, BNT162b2) or Moderna (Moderna, mRNA-1273) vaccine were enrolled in this study. The interval from vaccination to the onset of vertigo/dizziness was compared with inter-episodic interval of vertigo/dizziness in the same patients, but without vaccination, during past one year (2020). RESULTS: The incidences of severe systemic complication per 106 shots were 0.86 for Moderna vaccine, 1.22 for AZ vaccine, and 1.23 for BNT vaccine. Conversely, rate of post-vaccination vertigo/dizziness was noted in the Moderna group (66 %), followed by the AZ group (20 %) and the BNT (14 %) group, meaning that type of COVID-19 vaccine may affect various organ systems. The median time to the onset of vertigo/dizziness following vaccination is 10d, which is consistent with the onset of IgG production, and significantly less than inter-episodic interval (84d) in the same patients without vaccination. CONCLUSION: Post-vaccination vertigo/dizziness can manifest as exacerbation of previous neurotological disorder. The median time to the onset of vertigo/dizziness following COVID-19 vaccination is 10d. Since the outcome is fair after supportive treatment, the immunomodulatory effect of the vaccines does not undermine the necessity of the COVID-19 vaccination.
Тема - темы
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/prevention & control , Vaccination/adverse effects , Vertigo/etiologyРеферат
Background: Kidney transplant recipients (KTRs) have an impaired immune response after vaccination against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Iron deficiency (ID) may adversely affect immunity and vaccine efficacy. We aimed to investigate whether ferric carboxymaltose (FCM) treatment improves humoral and cellular responses after SARS-CoV-2 vaccination in iron-deficient KTRs. Methods: We randomly assigned 48 iron-deficient KTRs to intravenous FCM (1-4 doses of 500mg with six-week intervals) or placebo. Co-primary endpoints were SARS-CoV-2-specific anti-Receptor Binding Domain (RBD) Immunoglobulin G (IgG) titers and T-lymphocyte reactivity against SARS-CoV-2 at four weeks after the second vaccination with mRNA-1273 or mRNA-BNT162b2. Results: At four weeks after the second vaccination, patients receiving FCM had higher plasma ferritin and transferrin saturation (P<0.001 vs. placebo) and iron (P=0.02). However, SARS-CoV-2-specific anti-RBD IgG titers (FCM: 66.51 [12.02-517.59] BAU/mL; placebo: 115.97 [68.86-974.67] BAU/mL, P=0.07) and SARS-CoV-2-specific T-lymphocyte activation (FCM: 93.3 [0.85-342.5] IFN-É£ spots per 106 peripheral blood mononuclear cells (PBMCs), placebo: 138.3 [0.0-391.7] IFN-É£ spots per 106 PBMCs, P=0.83) were not significantly different among both arms. After the third vaccination, SARS-CoV-2-specific anti-RBD IgG titers remained similar between treatment groups (P=0.99). Conclusions: Intravenous iron supplementation efficiently restored iron status but did not improve the humoral or cellular immune response against SARS-CoV-2 after three vaccinations.
Тема - темы
COVID-19 Vaccines , COVID-19 , Iron Deficiencies , Kidney Transplantation , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunoglobulin G , Iron , Kidney Transplantation/adverse effects , Leukocytes, Mononuclear , SARS-CoV-2Реферат
BACKGROUND: The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unpredictable manifestations of coronavirus disease (COVID-19) and variable clinical course with some patients being asymptomatic whereas others experiencing severe respiratory distress, or even death. We aimed to evaluate the immunoglobulin G (IgG) response towards linear peptides on a peptide array containing sequences from SARS-CoV-2, Middle East respiratory syndrome-related coronavirus (MERS) and common-cold coronaviruses 229E, OC43, NL63 and HKU1 antigens, in order to identify immunological indicators of disease outcome in SARS-CoV-2 infected patients. METHODS: We included in the study 79 subjects, comprising 19 pediatric and 30 adult SARS-CoV-2 infected patients with increasing disease severity, from mild to critical illness, and 30 uninfected subjects who were vaccinated with one dose of SARS-CoV-2 spike mRNA BNT162b2 vaccine. Serum samples were analyzed by a peptide microarray containing 5828 overlapping 15-mer synthetic peptides corresponding to the full SARS-CoV-2 proteome and selected linear epitopes of spike (S), envelope (E) and membrane (M) glycoproteins as well as nucleoprotein (N) of MERS, SARS and coronaviruses 229E, OC43, NL63 and HKU1 (isolates 1, 2 and 5). RESULTS: All patients exhibited high IgG reactivity against the central region and C-terminus peptides of both SARS-CoV-2 N and S proteins. Setting the threshold value for serum reactivity above 25,000 units, 100% and 81% of patients with severe disease, 36% and 29% of subjects with mild symptoms, and 8% and 17% of children younger than 8-years reacted against N and S proteins, respectively. Overall, the total number of peptides in the SARS-CoV-2 proteome targeted by serum samples was much higher in children compared to adults. Notably, we revealed a differential antibody response to SARS-CoV-2 peptides of M protein between adults, mainly reacting against the C-terminus epitopes, and children, who were highly responsive to the N-terminus of M protein. In addition, IgG signals against NS7B, NS8 and ORF10 peptides were found elevated mainly among adults with mild (63%) symptoms. Antibodies towards S and N proteins of other coronaviruses (MERS, 229E, OC43, NL63 and HKU1) were detected in all groups without a significant correlation with SARS-CoV-2 antibody levels. CONCLUSIONS: Overall, our results showed that antibodies elicited by specific linear epitopes of SARS-CoV-2 proteome are age dependent and related to COVID-19 clinical severity. Cross-reaction of antibodies to epitopes of other human coronaviruses was evident in all patients with distinct profiles between children and adult patients. Several SARS-CoV-2 peptides identified in this study are of particular interest for the development of vaccines and diagnostic tests to predict the clinical outcome of SARS-CoV-2 infection.
Тема - темы
COVID-19 , Epitopes , Adult , Child , Humans , Antibodies, Viral , BNT162 Vaccine , Coronavirus 229E, Human , COVID-19/immunology , Immunoglobulin G , Middle East Respiratory Syndrome Coronavirus , Proteome , SARS-CoV-2Реферат
An 86-year-old Japanese male patient visited a nearby hospital with painful swelling in his left upper and lower limbs 35 days after the second dose of the BNT162b2 mRNA coronavirus disease-2019 (COVID-19) vaccine. He was referred to our hematological department due to a prolonged activated partial thromboplastin time and was urgently admitted. He was diagnosed with acquired hemophilia A (AHA) based on factor VIII (FVIII) activity of 1.7%, FVIII inhibitor of 152.3 BU/ml, and FVIII-binding antibodies detected by enzyme-linked immunosorbent assay. Immunosuppressive therapy with prednisolone (PSL) at 0.5 mg/kg/day was started owing to the risk of infection due to old age and poor activities of daily living. Hemostasis treatment with bypass hemostatic preparations (rFVIIa preparation, FVIIa/FX) was administered for each bleeding event, such as intramuscular and knee joint bleeding, resulting in good hemostatic effects. Coagulative complete remission was achieved on day 69 with PSL treatment; however, FVIII activity decreased with PSL tapering. AHA relapse with rectus abdominis muscle hematoma was observed after the third vaccination. This is the first Japanese report of AHA after COVID-19 vaccination and the world's first case, in which the presence of anti-FVIII-binding antibodies were observed.
Тема - темы
BNT162 Vaccine , COVID-19 , Hemophilia A , Hemostatics , Aged, 80 and over , Humans , Male , Activities of Daily Living , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , Factor VIII/therapeutic use , Hemophilia A/chemically induced , Hemophilia A/therapy , Hemostatics/therapeutic use , Prednisolone/therapeutic useРеферат
BACKGROUND: To describe recent cases of optic neuritis in patients who received a vaccine for COVID-19. METHODS: Retrospective case series of patients diagnosed with optic neuritis after a recent COVID-19 vaccination with BNT162b2 (Pfizer-BioNTech), in one university-affiliated tertiary hospital, from January 2021 to June 2021. Data were obtained from medical charts. RESULTS: We describe 7 patients who developed optic neuritis after immunization with the BNT162b2 vaccine. CONCLUSIONS: A causal relationship cannot be deduced, and the importance of COVID-19 vaccination is not challenged. However, the authors encourage a prospective monitoring and reporting system for all patients receiving COVID-19 vaccines, to further assess the spectrum of adverse events in large databases.
Тема - темы
COVID-19 Vaccines , COVID-19 , Optic Neuritis , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Optic Neuritis/diagnosis , Optic Neuritis/etiology , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Vaccination/adverse effectsРеферат
Acquired hemophilia A (AHA) is a rare disease characteized by bleeding symptoms caused by decreased factor VIII activity due to the appearance of inhibitors to factor VIII triggered by malignancy or collagen disease. An 86-year-old woman developed purpura on her extremities after the first dose of the BNT162b2 mRNA COVID-19 vaccine. This symptom subsided after a few days. After the second dose of the BNT162b2 mRNA COVID-19 vaccine, purpura appeared again, and the patient was referred to our hospital Her APTT was remarkably prolonged to 110 seconds, and a cross-mixing test revealed an inhibitor pattern. Since FVIII activity was <1% and FVIII inhibitor was 51.6 BU, she was diagnosed with AHA. Prednisolone therapy was started, and coagulative complete remission was achieved. Because acquired hemophilia can develop after mRNA COVID-19 vaccination, as in this case, it is critical to monitor the appearance of bleeding symptom.
Тема - темы
BNT162 Vaccine , COVID-19 , Hemophilia A , Aged, 80 and over , Female , Humans , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , COVID-19/complications , Hemophilia A/chemically induced , Hemophilia A/therapy , HemorrhageРеферат
Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.
Тема - темы
COVID-19 Vaccines , COVID-19 , Vaccines , Adult , Humans , Adenoviridae/genetics , Antibodies , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , RNA, Messenger/geneticsРеферат
INTRODUCTION: New variants of the SARS-CoV-2 coronavirus are constantly appearing, causing the COVID-19 pandemic. From November 2021, most infections were caused by the Omicron coronavirus variant. OBJECTIVE: The aim of this prospective observational cohort study was to estimate the incidence of COVID-19 infections in the high-risk healthcare workers after two BNT162b2 mRNA Pfizer-BioNTech vaccines and the subsequent booster vaccine, as well as the effectiveness, the safety and the humoral immune response of the vaccines. METHOD: We started the two Pfizer-BioNTech ((BNT162b29) vaccinations of healthcare workers of the Polyclinic of the Hospitaller Brothers of St. John between January 07 and March 08, 2021. The choice of the type and timing of the third booster vaccination was voluntary. The workers were followed up between January 07, 2021 and June 29, 2022. The infection rate, adverse events of the vaccination, risk factors to infection and the kinetics of anti-spike (S) antibody and anti-nucleocapsid (N) antibody serum level were evaluated. RESULTS: The data of 294 healthcare workers - 96 medical doctors, 127 nurses and 71 workers in hospital - who had at least three antibody level measurements were analyzed. The third booster vaccine was given to 280 workers, the distribution of the vaccines was the following: Pfizer-BioNTech (BNT162b29) vaccine (n = 210), Moderna COVID-19 (mRNA-1273) vaccine (n = 37), Sinopharm COVID-19 vaccine (n = 21), Janssen COVID-19 (n = 10), AstraZeneca (ChAdOx1 nCoV-19) vaccine (n = 2). Infection occurred in 121 cases (41%) during the observation period. The course of the COVID-19 infections was mostly mild (97%) and recovered within a week. During the observational period, 2 workers died: a 56-year-old woman died after two vaccinations for reason unrelated to COVID-19 infection, and a 58-year-old man died after the booster vaccination, following COVID-19 infection. The incidence of infection did not correlate with age, sex, comorbidities, smoking, occupation and BMI. The median titre of anti-S antibody serum level increased one month after the second vaccination of the basic immunization (1173.0 U/ml) and decreased slowly until the 8th month (678.5-625.8-538.0 U/ml) after the basic vaccination. One month after the booster vaccination, the median titre of anti-S antibody serum level increased significantly (16 535 U/ml), and showed a decreasing trend in the 3rd month after the booster vaccination (9697.7 U/ml). An exceptionally high S antibody serum level increasing after the basic (>10 000 U/mL) and booster (>60 000 U/m) vaccination showed a correlation with prior COVID-19 infection. The median cut-off index (COI) of anti-N antibody was not affected by vaccination, the increasing of the titre is related to the infection. CONCLUSION: The booster vaccination had less effect on the infection caused by Omicron variant, but the course of the infection was milder. Compared to the basic immunisation, the booster vaccination caused a significant increase in the S antibody level. An exceptionally high S antibody level correlated with prior COVID-19 infection. Orv Hetil. 2023; 164(5): 163-171.
Тема - темы
COVID-19 , Male , Female , Humans , Middle Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , ChAdOx1 nCoV-19 , Pandemics , Prospective Studies , SARS-CoV-2 , Vaccination , Health Personnel , Antibodies , Antibodies, ViralРеферат
Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.
Тема - темы
Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antiviral Agents , Breakthrough Infections , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/geneticsРеферат
BACKGROUND: Evidence is accumulating of coronavirus disease 2019 (COVID-19) vaccine effectiveness among persons with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated the effect against incident SARS-CoV-2 infection of (1) prior infection without vaccination, (2) vaccination (2 doses of Pfizer-BioNTech COVID-19 vaccine) without prior infection, and (3) vaccination after prior infection, all compared with unvaccinated persons without prior infection. We included long-term care facility staff in New York City aged <65 years with weekly SARS-CoV-2 testing from 21 January to 5 June 2021. Test results were obtained from state-mandated laboratory reporting. Vaccination status was obtained from the Citywide Immunization Registry. Cox proportional hazards models adjusted for confounding with inverse probability of treatment weights. RESULTS: Compared with unvaccinated persons without prior infection, incident SARS-CoV-2 infection risk was lower in all groups: 54.6% (95% confidence interval, 38.0%-66.8%) lower among unvaccinated, previously infected persons; 80.0% (67.6%-87.7%) lower among fully vaccinated persons without prior infection; and 82.4% (70.8%-89.3%) lower among persons fully vaccinated after prior infection. CONCLUSIONS: Two doses of Pfizer-BioNTech COVID-19 vaccine reduced SARS-CoV-2 infection risk by ≥80% and, for those with prior infection, increased protection from prior infection alone. These findings support recommendations that all eligible persons, regardless of prior infection, be vaccinated against COVID-19.
Тема - темы
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , BNT162 Vaccine , COVID-19 Testing , Long-Term Care , New York City/epidemiology , SARS-CoV-2 , Nursing HomesРеферат
Antiphospholipid antibodies (aPL) comprise a group of autoantibodies that reflect prothrombotic risk in antiphospholipid syndrome (APS) but may also be present in a small proportion of healthy individuals. They are often transiently elevated in infections, including SARS-CoV-2, and may also be associated with vaccine-induced autoimmunity. Therefore, we aimed to investigate the dynamics of aPL in COVID-19 patients and in individuals (healthcare professionals-HCPs) after receiving BNT162b2 vaccine and to compare aPL levels and positivity with those found in APS patients. We measured solid-phase identifiable aPL, including anticardiolipin (aCL), anti-ß2 glycoprotein I (anti-ß2GPI), and anti-prothrombin/phosphatidylserine (aPS/PT) antibodies in 58 HCPs before and after vaccination (at 3 weeks, 3, 6, and 9 months after the second dose, and 3 weeks after the third booster dose), in 45 COVID-19 patients hospitalized in the ICU, in 89 COVID-19 patients hospitalized in the non-ICU (at admission, at hospital discharge, and at follow-up), and in 52 patients with APS. The most frequently induced aPL in COVID-19 patients (hospitalized in non-ICU) were aCL (50.6% of patients had positive levels at at least one time point), followed by anti-ß2GPI (21.3% of patients had positive levels at at least one time point). In 9/89 COVID-19 patients, positive aPL levels persisted for three months. One HCP developed aCL IgG after vaccination but the persistence could not be confirmed, and two HCPs developed persistent anti-ß2GPI IgG after vaccination with no increase during a 1-year follow-up period. Solid-phase aPL were detected in 84.6% of APS patients, in 49.4% of COVID-19 patients hospitalized in the non-ICU, in 33.3% of COVID-19 patients hospitalized in the ICU, and in only 17.2% of vaccinated HCPs. aPL levels and multiple positivity were significantly lower in both infected groups and in vaccinated individuals compared with APS patients. In conclusion, BNT162b2 mRNA vaccine may have induced aPL in a few individuals, whereas SARS-CoV-2 infection itself results in a higher percentage of aPL induction, but the levels, persistence, and multiple positivity of aPL do not follow the pattern observed in APS.
Тема - темы
Antibodies, Antiphospholipid , Antiphospholipid Syndrome , BNT162 Vaccine , COVID-19 , Humans , beta 2-Glycoprotein I , BNT162 Vaccine/immunology , COVID-19/prevention & control , Immunoglobulin G , SARS-CoV-2 , VaccinationРеферат
Introduction: This phase I study explored the immunogenicity and reactogenicity of accelerated, Q7 fractional, intradermal vaccination regimens for COVID-19. Methods: Participants (n = 60) aged 18-60 years, naïve to SARS-CoV-2 infection or vaccination, were randomly allocated into one of four homologous or heterologous accelerated two-dose, two-injection intradermal regimens seven days apart:(1) BNT162b2-BNT162b2(n= 20),(2) ChAdOx1- BNT162b2 (n = 20), (3) CoronaVac-ChAdOx1 (n = 10), and (4) ChAdOx1-ChAdOx1 (n = 10). CoronaVac and ChAdOx1 were 20%, and BNT162b2 17%, of their standard intramuscular doses (0.1 mL and 0.05 mL per injection, respectively). Humoral immune responses were measured through IgG response towards receptor binding domains (RBD-IgG) of ancestral SARS-CoV-2 spike protein and pseudovirus neutralization tests (PVNT50). Cellular immune responses were measured using ELISpot for ancestral protein pools. Results: Immunogenicity was highest in regimen (2), followed by (1), (4), and (3) 2 weeks after the second dose (P < 0.001 for anti-RBD-IgG and P= 0.01 for PVNT50). Each group had significantly lower anti-RBD IgG (by factors of 5.4, 3.6, 11.6, and 2.0 for regimens (1) to (4), respectively) compared to their respective standard intramuscular regimens (P < 0.001 for each). Seroconversion rates for PVNT50 against the ancestral strain were 75%, 90%, 57% and 37% for regimens (1) to (4), respectively. All participants elicited ELISpot response to S-protein after vaccination. Adverse events were reportedly mild or moderate across cohorts. Discussion: We concluded that accelerated, fractional, heterologous or homologous intradermal vaccination regimens of BNT162b2 and ChAdOx1 were well tolerated, provided rapid immune priming against SARS-CoV-2, and may prove useful for containing future outbreaks.
Тема - темы
BNT162 Vaccine , COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Immunoglobulin GРеферат
More people with a history of prior infection are receiving SARS-CoV-2 vaccines. Understanding the level of protection granted by 'hybrid immunity', the combined response of infection- and vaccine-induced immunity, may impact vaccination strategies through tailored dosing. A total of 36 infected ('prior infection') and 33 SARS-CoV-2 'naïve' individuals participated. Participants provided sera six months after completing a round of BNT162b2 vaccination, to be processed for anti-spike antibody measurements and the receptor binding domain-ACE2 binding inhibition assays. The relationships between antibody titer, groups and age were explored. Anti-spike antibody titers at 6 months post-vaccination were significantly higher, reaching 13- to 17-fold, in the 'prior infection' group. Semi-log regression models showed that participants with 'prior infection' demonstrated higher antibody titer compared with the 'naïve' even after adjusting for age. The enhancement in antibody titer attributable to positive infection history increased from 8.9- to 9.4- fold at age 30 to 19- to 32-fold at age 60. Sera from the 'prior infection' group showed higher inhibition capacity against all six analyzed strains, including the Omicron variant. Prior COVID-19 led to establishing enhanced humoral immunity at 6 months after vaccination. Antibody fold-difference attributed to positive COVID-19 history increased with age, possibly because older individuals are prone to symptomatic infection accompanied by potentiated immune responses. While still pending any modifications of dosing recommendations (i.e. reduced doses for individuals with prior infection), our observation adds to the series of real-world data demonstrating the enhanced and more durable immune response evoked by booster vaccinations following prior infection.
Тема - темы
COVID-19 Vaccines , COVID-19 , Humans , Middle Aged , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , SARS-CoV-2 , AdultРеферат
BACKGROUND: Safe and effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in young children. METHODS: We conducted a phase 1 dose-finding study and are conducting an ongoing phase 2-3 safety, immunogenicity, and efficacy trial of the BNT162b2 vaccine in healthy children 6 months to 11 years of age. We present results for children 6 months to less than 2 years of age and those 2 to 4 years of age through the data-cutoff dates (April 29, 2022, for safety and immunogenicity and June 17, 2022, for efficacy). In the phase 2-3 trial, participants were randomly assigned (in a 2:1 ratio) to receive two 3-µg doses of BNT162b2 or placebo. On the basis of preliminary immunogenicity results, a third 3-µg dose (≥8 weeks after dose 2) was administered starting in January 2022, which coincided with the emergence of the B.1.1.529 (omicron) variant. Immune responses at 1 month after doses 2 and 3 in children 6 months to less than 2 years of age and those 2 to 4 years of age were immunologically bridged to responses after dose 2 in persons 16 to 25 years of age who received 30 µg of BNT162b2 in the pivotal trial. RESULTS: During the phase 1 dose-finding study, two doses of BNT162b2 were administered 21 days apart to 16 children 6 months to less than 2 years of age (3-µg dose) and 48 children 2 to 4 years of age (3-µg or 10-µg dose). The 3-µg dose level was selected for the phase 2-3 trial; 1178 children 6 months to less than 2 years of age and 1835 children 2 to 4 years of age received BNT162b2, and 598 and 915, respectively, received placebo. Immunobridging success criteria for the geometric mean ratio and seroresponse at 1 month after dose 3 were met in both age groups. BNT162b2 reactogenicity events were mostly mild to moderate, with no grade 4 events. Low, similar incidences of fever were reported after receipt of BNT162b2 (7% among children 6 months to <2 years of age and 5% among those 2 to 4 years of age) and placebo (6 to 7% among children 6 months to <2 years of age and 4 to 5% among those 2 to 4 years of age). The observed overall vaccine efficacy against symptomatic Covid-19 in children 6 months to 4 years of age was 73.2% (95% confidence interval, 43.8 to 87.6) from 7 days after dose 3 (on the basis of 34 cases). CONCLUSIONS: A three-dose primary series of 3-µg BNT162b2 was safe, immunogenic, and efficacious in children 6 months to 4 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).