Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 320
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
PLoS One ; 18(2): e0281666, 2023.
Статья в английский | MEDLINE | ID: covidwho-2244260

Реферат

PURPOSE: Children are at elevated risk for COVID-19 (SARS-CoV-2) infection due to their social behaviors. The purpose of this study was to determine if usage of radiological chest X-rays impressions can help predict whether a young adult has COVID-19 infection or not. METHODS: A total of 2572 chest impressions from 721 individuals under the age of 18 years were considered for this study. An ensemble learning method, Random Forest Classifier (RFC), was used for classification of patients suffering from infection. RESULTS: Five RFC models were implemented with incremental features and the best model achieved an F1-score of 0.79 with Area Under the ROC curve as 0.85 using all input features. Hyper parameter tuning and cross validation was performed using grid search cross validation and SHAP model was used to determine feature importance. The radiological features such as pneumonia, small airways disease, and atelectasis (confounded with catheter) were found to be highly associated with predicting the status of COVID-19 infection. CONCLUSIONS: In this sample, radiological X-ray films can predict the status of COVID-19 infection with good accuracy. The multivariate model including symptoms presented around the time of COVID-19 test yielded good prediction score.


Тема - темы
COVID-19 , Pneumonia , Young Adult , Humans , Child , Adolescent , SARS-CoV-2 , ROC Curve , Machine Learning
2.
PLoS One ; 18(2): e0281291, 2023.
Статья в английский | MEDLINE | ID: covidwho-2244066

Реферат

RESEARCH MOTIVATION: Recently, the digital divide problem among elderly individuals has been intensifying. A larger problem is that the level of use of digital technology varies from person to person. Therefore, a digital divide may even exist among elderly individuals. Considering the recent accelerating digital transformation in our society, it is highly likely that elderly individuals are experiencing many difficulties in their daily life. Therefore, it is necessary to quickly address and manage these difficulties. RESEARCH OBJECTIVE: This study aims to predict the digital divide in the elderly population and provide essential insights into managing it. To this end, predictive analysis is performed using public data and machine learning techniques. METHODS AND MATERIALS: This study used data from the '2020 Report on Digital Information Divide Survey' published by the Korea National Information Society Agency. In establishing the prediction model, various independent variables were used. Ten variables with high importance for predicting the digital divide were identified and used as critical, independent variables to increase the convenience of analyzing the model. The data were divided into 70% for training and 30% for testing. The model was trained on the training set, and the model's predictive accuracy was analyzed on the test set. The prediction accuracy was analyzed using logistic regression (LR), support vector machine (SVM), K-nearest neighbor (KNN), decision tree (DT), and eXtreme gradient boosting (XGBoost). A convolutional neural network (CNN) was used to further improve the accuracy. In addition, the importance of variables was analyzed using data from 2019 before the COVID-19 outbreak, and the results were compared with the results from 2020. RESULTS: The study results showed that the variables with high importance in the 2020 data predicting the digital divide of elderly individuals were the demographic perspective, internet usage perspective, self-efficacy perspective, and social connectedness perspective. These variables, as well as the social support perspective, were highly important in 2019. The highest prediction accuracy was achieved using the CNN-based model (accuracy: 80.4%), followed by the XGBoost model (accuracy: 79%) and LR model (accuracy: 78.3%). The lowest accuracy (accuracy: 72.6%) was obtained using the DT model. DISCUSSION: The results of this analysis suggest that support that can strengthen the practical connection of elderly individuals through digital devices is becoming more critical than ever in a situation where digital transformation is accelerating in various fields. In addition, it is necessary to comprehensively use classification algorithms from various academic fields when constructing a classification model to obtain higher prediction accuracy. CONCLUSION: The academic significance of this study is that the CNN, which is often employed in image and video processing, was extended and applied to a social science field using structured data to improve the accuracy of the prediction model. The practical significance of this study is that the prediction models and the analytical methodologies proposed in this article can be applied to classify elderly people affected by the digital divide, and the trained models can be used to predict the people of younger generations who may be affected by the digital divide. Another practical significance of this study is that, as a method for managing individuals who are affected by a digital divide, the self-efficacy perspective about acquiring and using ICTs and the socially connected perspective are suggested in addition to the demographic perspective and the internet usage perspective.


Тема - темы
COVID-19 , Digital Divide , Humans , Aged , COVID-19/epidemiology , Algorithms , Cluster Analysis , Machine Learning
3.
Sci Rep ; 13(1): 2399, 2023 02 10.
Статья в английский | MEDLINE | ID: covidwho-2239010

Реферат

We aimed to propose a mortality risk prediction model using on-admission clinical and laboratory predictors. We used a dataset of confirmed COVID-19 patients admitted to three general hospitals in Tehran. Clinical and laboratory values were gathered on admission. Six different machine learning models and two feature selection methods were used to assess the risk of in-hospital mortality. The proposed model was selected using the area under the receiver operator curve (AUC). Furthermore, a dataset from an additional hospital was used for external validation. 5320 hospitalized COVID-19 patients were enrolled in the study, with a mortality rate of 17.24% (N = 917). Among 82 features, ten laboratories and 27 clinical features were selected by LASSO. All methods showed acceptable performance (AUC > 80%), except for K-nearest neighbor. Our proposed deep neural network on features selected by LASSO showed AUC scores of 83.4% and 82.8% in internal and external validation, respectively. Furthermore, our imputer worked efficiently when two out of ten laboratory parameters were missing (AUC = 81.8%). We worked intimately with healthcare professionals to provide a tool that can solve real-world needs. Our model confirmed the potential of machine learning methods for use in clinical practice as a decision-support system.


Тема - темы
COVID-19 , Humans , Laboratories , ROC Curve , Iran/epidemiology , Machine Learning
4.
Neural Netw ; 161: 178-184, 2023 Apr.
Статья в английский | MEDLINE | ID: covidwho-2236547

Реферат

In the imbalance data scenarios, Deep Neural Networks (DNNs) fail to generalize well on minority classes. In this letter, we propose a simple and effective learning function i.e, Visually Interpretable Space Adjustment Learning (VISAL) to handle the imbalanced data classification task. VISAL's objective is to create more room for the generalization of minority class samples by bringing in both the angular and euclidean margins into the cross-entropy learning strategy. When evaluated on the imbalanced versions of CIFAR, Tiny ImageNet, COVIDx and IMDB reviews datasets, our proposed method outperforms the state of the art works by a significant margin.


Тема - темы
Algorithms , Neural Networks, Computer , Machine Learning , Learning , Generalization, Psychological
5.
Sci Rep ; 13(1): 2236, 2023 02 08.
Статья в английский | MEDLINE | ID: covidwho-2229117

Реферат

As clinicians are faced with a deluge of clinical data, data science can play an important role in highlighting key features driving patient outcomes, aiding in the development of new clinical hypotheses. Insight derived from machine learning can serve as a clinical support tool by connecting care providers with reliable results from big data analysis that identify previously undetected clinical patterns. In this work, we show an example of collaboration between clinicians and data scientists during the COVID-19 pandemic, identifying sub-groups of COVID-19 patients with unanticipated outcomes or who are high-risk for severe disease or death. We apply a random forest classifier model to predict adverse patient outcomes early in the disease course, and we connect our classification results to unsupervised clustering of patient features that may underpin patient risk. The paradigm for using data science for hypothesis generation and clinical decision support, as well as our triaged classification approach and unsupervised clustering methods to determine patient cohorts, are applicable to driving rapid hypothesis generation and iteration in a variety of clinical challenges, including future public health crises.


Тема - темы
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Machine Learning , Patients , Big Data
6.
PLoS One ; 18(2): e0281272, 2023.
Статья в английский | MEDLINE | ID: covidwho-2229770

Реферат

BACKGROUND: Accurate COVID-19 prognosis is a critical aspect of acute and long-term clinical management. We identified discrete clusters of early stage-symptoms which may delineate groups with distinct disease severity phenotypes, including risk of developing long-term symptoms and associated inflammatory profiles. METHODS: 1,273 SARS-CoV-2 positive U.S. Military Health System beneficiaries with quantitative symptom scores (FLU-PRO Plus) were included in this analysis. We employed machine-learning approaches to identify symptom clusters and compared risk of hospitalization, long-term symptoms, as well as peak CRP and IL-6 concentrations. RESULTS: We identified three distinct clusters of participants based on their FLU-PRO Plus symptoms: cluster 1 ("Nasal cluster") is highly correlated with reporting runny/stuffy nose and sneezing, cluster 2 ("Sensory cluster") is highly correlated with loss of smell or taste, and cluster 3 ("Respiratory/Systemic cluster") is highly correlated with the respiratory (cough, trouble breathing, among others) and systemic (body aches, chills, among others) domain symptoms. Participants in the Respiratory/Systemic cluster were twice as likely as those in the Nasal cluster to have been hospitalized, and 1.5 times as likely to report that they had not returned-to-activities, which remained significant after controlling for confounding covariates (P < 0.01). Respiratory/Systemic and Sensory clusters were more likely to have symptoms at six-months post-symptom-onset (P = 0.03). We observed higher peak CRP and IL-6 in the Respiratory/Systemic cluster (P < 0.01). CONCLUSIONS: We identified early symptom profiles potentially associated with hospitalization, return-to-activities, long-term symptoms, and inflammatory profiles. These findings may assist in patient prognosis, including prediction of long COVID risk.


Тема - темы
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Interleukin-6 , Phenotype , Hospitalization , Machine Learning
7.
Front Public Health ; 10: 1011277, 2022.
Статья в английский | MEDLINE | ID: covidwho-2215442

Реферат

Background: SARS-CoV-2 patients re-experiencing positive nucleic acid test results after recovery is a concerning phenomenon. Current pandemic prevention strategy demands the quarantine of all recurrently positive patients. This study provided evidence on whether quarantine is required in those patients, and predictive algorithms to detect subjects with infectious possibility. Methods: This observational study recruited recurrently positive patients who were admitted to our shelter hospital between May 12 and June 10, 2022. The demographic and epidemiologic data was collected, and nucleic acid tests were performed daily. virus isolation was done in randomly selected cases. The group-based trajectory model was developed based on the cycle threshold (Ct) value variations. Machine learning models were validated for prediction accuracy. Results: Among the 494 subjects, 72.04% were asymptomatic, and 23.08% had a Ct value under 30 at recurrence. Two trajectories were identified with either rapid (92.24%) or delayed (7.76%) recovery of Ct values. The latter had significantly higher incidence of comorbidities; lower Ct value at recurrence; more persistent cough; and more frequently reported close contacts infection compared with those recovered rapidly. However, negative virus isolation was reported in all selected samples. Our predictive model can efficiently discriminate those with delayed Ct value recovery and infectious potentials. Conclusion: Quarantine seems to be unnecessary for the majority of re-positive patients who may have low transmission risks. Our predictive algorithm can screen out the suspiciously infectious individuals for quarantine. These findings may assist the enaction of SARS-CoV-2 pandemic prevention strategies regarding recurrently positive patients in the future.


Тема - темы
COVID-19 , Nucleic Acids , Humans , Quarantine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , RNA , SARS-CoV-2 , Machine Learning
8.
Front Public Health ; 10: 1001340, 2022.
Статья в английский | MEDLINE | ID: covidwho-2215432

Реферат

Coronavirus disease 2019 (COVID-19) spread worldwide and presented a significant threat to people's health. Inappropriate disease assessment and treatment strategies bring a heavy burden on healthcare systems. Our study aimed to construct predictive models to assess patients with COVID-19 who may have poor prognoses early and accurately. This research performed a retrospective analysis on two cohorts of patients with COVID-19. Data from the Barcelona cohort were used as the training set, and data from the Rotterdam cohort were used as the validation set. Cox regression, logistic regression, and different machine learning methods including random forest (RF), support vector machine (SVM), and decision tree (DT) were performed to construct COVID-19 death prognostic models. Based on multiple clinical characteristics and blood inflammatory cytokines during the first day of hospitalization for the 138 patients with COVID-19, we constructed various models to predict the in-hospital mortality of patients with COVID-19. All the models showed outstanding performance in identifying high-risk patients with COVID-19. The accuracy of the logistic regression, RF, and DT models is 86.96, 80.43, and 85.51%, respectively. Advanced age and the abnormal expression of some inflammatory cytokines including IFN-α, IL-8, and IL-6 have been proven to be closely associated with the prognosis of patients with COVID-19. The models we developed can assist doctors in developing appropriate COVID-19 treatment strategies, including allocating limited medical resources more rationally and early intervention in high-risk groups.


Тема - темы
COVID-19 , Humans , Cytokines , Retrospective Studies , Hospitalization , Machine Learning , COVID-19 Drug Treatment
9.
Rev Invest Clin ; 74(6): 314-327, 2022.
Статья в английский | MEDLINE | ID: covidwho-2205349

Реферат

Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusions: ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Algorithms , Prognosis , Machine Learning
10.
BMC Med Inform Decis Mak ; 22(1): 340, 2022 12 28.
Статья в английский | MEDLINE | ID: covidwho-2196239

Реферат

BACKGROUND: This study aimed to explore whether explainable Artificial Intelligence methods can be fruitfully used to improve the medical management of patients suffering from complex diseases, and in particular to predict the death risk in hospitalized patients with SARS-Cov-2 based on admission data. METHODS: This work is based on an observational ambispective study that comprised patients older than 18 years with a positive SARS-Cov-2 diagnosis that were admitted to the hospital Azienda Ospedaliera "SS Antonio e Biagio e Cesare Arrigo", Alessandria, Italy from February, 24 2020 to May, 31 2021, and that completed the disease treatment inside this structure. The patients'medical history, demographic, epidemiologic and clinical data were collected from the electronic medical records system and paper based medical records, entered and managed by the Clinical Study Coordinators using the REDCap electronic data capture tool patient chart. The dataset was used to train and to evaluate predictive ML models. RESULTS: We overall trained, analysed and evaluated 19 predictive models (both supervised and unsupervised) on data from 824 patients described by 43 features. We focused our attention on models that provide an explanation that is understandable and directly usable by domain experts, and compared the results against other classical machine learning approaches. Among the former, JRIP showed the best performance in 10-fold cross validation, and the best average performance in a further validation test using a different patient dataset from the beginning of the third COVID-19 wave. Moreover, JRIP showed comparable performances with other approaches that do not provide a clear and/or understandable explanation. CONCLUSIONS: The ML supervised models showed to correctly discern between low-risk and high-risk patients, even when the medical disease context is complex and the list of features is limited to information available at admission time. Furthermore, the models demonstrated to reasonably perform on a dataset from the third COVID-19 wave that was not used in the training phase. Overall, these results are remarkable: (i) from a medical point of view, these models evaluate good predictions despite the possible differences entitled with different care protocols and the possible influence of other viral variants (i.e. delta variant); (ii) from the organizational point of view, they could be used to optimize the management of health-care path at the admission time.


Тема - темы
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Artificial Intelligence , Machine Learning , Retrospective Studies
11.
BMC Infect Dis ; 23(1): 18, 2023 Jan 11.
Статья в английский | MEDLINE | ID: covidwho-2196089

Реферат

BACKGROUND: Mexico ranks fifth worldwide in the number of deaths due to COVID-19. Identifying risk markers through easily accessible clinical data could help in the initial triage of COVID-19 patients and anticipate a fatal outcome, especially in the most socioeconomically disadvantaged regions. This study aims to identify markers that increase lethality risk in patients diagnosed with COVID-19, based on machine learning (ML) methods. Markers were differentiated by sex and age-group. METHODS: A total of 11,564 cases of COVID-19 in Mexico were extracted from the Epidemiological Surveillance System for Viral Respiratory Disease. Four ML classification methods were trained to predict lethality, and an interpretability approach was used to identify those markers. RESULTS: Models based on Extreme Gradient Boosting (XGBoost) yielded the best performance in a test set. This model achieved a sensitivity of 0.91, a specificity of 0.69, a positive predictive value of 0.344, and a negative predictive value of 0.965. For female patients, the leading markers are diabetes and arthralgia. For males, the main markers are chronic kidney disease (CKD) and chest pain. Dyspnea, hypertension, and polypnea increased the risk of death in both sexes. CONCLUSIONS: ML-based models using an interpretability approach successfully identified risk markers for lethality by sex and age. Our results indicate that age is the strongest demographic factor for a fatal outcome, while all other markers were consistent with previous clinical trials conducted in a Mexican population. The markers identified here could be used as an initial triage, especially in geographic areas with limited resources.


Тема - темы
COVID-19 , Diabetes Mellitus , Male , Humans , Female , COVID-19/epidemiology , Cross-Sectional Studies , Mexico/epidemiology , Machine Learning
12.
BMC Prim Care ; 24(1): 14, 2023 01 14.
Статья в английский | MEDLINE | ID: covidwho-2196059

Реферат

BACKGROUND: Artificial intelligence (AI) is increasingly used to support general practice in the early detection of disease and treatment recommendations. However, AI systems aimed at alleviating time-consuming administrative tasks currently appear limited. This scoping review thus aims to summarize the research that has been carried out in methods of machine learning applied to the support and automation of administrative tasks in general practice. METHODS: Databases covering the fields of health care and engineering sciences (PubMed, Embase, CINAHL with full text, Cochrane Library, Scopus, and IEEE Xplore) were searched. Screening for eligible studies was completed using Covidence, and data was extracted along nine research-based attributes concerning general practice, administrative tasks, and machine learning. The search and screening processes were completed during the period of April to June 2022. RESULTS: 1439 records were identified and 1158 were screened for eligibility criteria. A total of 12 studies were included. The extracted attributes indicate that most studies concern various scheduling tasks using supervised machine learning methods with relatively low general practitioner (GP) involvement. Importantly, four studies employed the latest available machine learning methods and the data used frequently varied in terms of setting, type, and availability. CONCLUSION: The limited field of research developing in the application of machine learning to administrative tasks in general practice indicates that there is a great need and high potential for such methods. However, there is currently a lack of research likely due to the unavailability of open-source data and a prioritization of diagnostic-based tasks. Future research would benefit from open-source data, cutting-edge methods of machine learning, and clearly stated GP involvement, so that improved and replicable scientific research can be done.


Тема - темы
Artificial Intelligence , General Practice , Family Practice , Automation , Machine Learning
13.
BMC Bioinformatics ; 24(1): 7, 2023 Jan 06.
Статья в английский | MEDLINE | ID: covidwho-2196038

Реферат

BACKGROUND: With the global spread of COVID-19, the world has seen many patients, including many severe cases. The rapid development of machine learning (ML) has made significant disease diagnosis and prediction achievements. Current studies have confirmed that omics data at the host level can reflect the development process and prognosis of the disease. Since early diagnosis and effective treatment of severe COVID-19 patients remains challenging, this research aims to use omics data in different ML models for COVID-19 diagnosis and prognosis. We used several ML models on omics data of a large number of individuals to first predict whether patients are COVID-19 positive or negative, followed by the severity of the disease. RESULTS: On the COVID-19 diagnosis task, we got the best AUC of 0.99 with our multilayer perceptron model and the highest F1-score of 0.95 with our logistic regression (LR) model. For the severity prediction task, we achieved the highest accuracy of 0.76 with an LR model. Beyond classification and predictive modeling, our study founds ML models performed better on integrated multi-omics data, rather than single omics. By comparing top features from different omics dataset, we also found the robustness of our model, with a wider range of applicability in diverse dataset related to COVID-19. Additionally, we have found that omics-based models performed better than image or physiological feature-based models, proving the importance of the omics-based dataset for future model development. CONCLUSIONS: This study diagnoses COVID-19 positive cases and predicts accurate severity levels. It lowers the dependence on clinical data and professional judgment, by leveraging the utilization of state-of-the-art models. our model showed wider applicability across different omics dataset, which is highly transferable in other respiratory or similar diseases. Hospital and public health care mechanisms can optimize the distribution of medical resources and improve the robustness of the medical system.


Тема - темы
COVID-19 Testing , COVID-19 , Humans , COVID-19/diagnosis , Machine Learning , Neural Networks, Computer , Logistic Models
14.
BMJ Open ; 12(12): e054862, 2022 12 16.
Статья в английский | MEDLINE | ID: covidwho-2193753

Реферат

OBJECTIVE: To investigate determining factors of happiness during the COVID-19 pandemic. DESIGN: Observational study. SETTING: Large online surveys in Japan before and during the COVID-19 pandemic. PARTICIPANTS: A random sample of 25 482 individuals who are representatives of the Japanese population. MAIN OUTCOME MEASURE: Self-reported happiness measured using a 10-point Likert scale, where higher scores indicated higher levels of happiness. We defined participants with ≥8 on the scale as having high levels of happiness. RESULTS: Among the 25 482 respondents, the median score of self-reported happiness was 7 (IQR 6-8), with 11 418 (45%) reporting high levels of happiness during the pandemic. The multivariable logistic regression model showed that meaning in life, having a spouse, trust in neighbours and female gender were positively associated with happiness (eg, adjusted OR (aOR) for meaning in life 4.17; 95% CI 3.92 to 4.43; p<0.001). Conversely, self-reported poor health, anxiety about future household income, psychiatric diseases except depression and feeling isolated were negatively associated with happiness (eg, aOR for self-reported poor health 0.44; 95% CI 0.39 to 0.48; p<0.001). Using machine-learning methods, we found that meaning in life and social capital (eg, having a spouse and trust in communities) were the strongest positive determinants of happiness, whereas poor health, anxiety about future household income and feeling isolated were important negative determinants of happiness. Among 6965 subjects who responded to questionnaires both before and during the COVID-19 pandemic, there was no systemic difference in the patterns as to determinants of declined happiness during the pandemic. CONCLUSION: Using machine-learning methods on data from large online surveys in Japan, we found that interventions that have a positive impact on social capital as well as successful pandemic control and economic stimuli may effectively improve the population-level psychological well-being during the COVID-19 pandemic.


Тема - темы
COVID-19 , Female , Humans , COVID-19/epidemiology , Pandemics , Happiness , SARS-CoV-2 , Retrospective Studies , Machine Learning
15.
Sci Rep ; 13(1): 1022, 2023 01 19.
Статья в английский | MEDLINE | ID: covidwho-2186034

Реферат

Machine learning algorithms are being increasingly used in healthcare settings but their generalizability between different regions is still unknown. This study aims to identify the strategy that maximizes the predictive performance of identifying the risk of death by COVID-19 in different regions of a large and unequal country. This is a multicenter cohort study with data collected from patients with a positive RT-PCR test for COVID-19 from March to August 2020 (n = 8477) in 18 hospitals, covering all five Brazilian regions. Of all patients with a positive RT-PCR test during the period, 2356 (28%) died. Eight different strategies were used for training and evaluating the performance of three popular machine learning algorithms (extreme gradient boosting, lightGBM, and catboost). The strategies ranged from only using training data from a single hospital, up to aggregating patients by their geographic regions. The predictive performance of the algorithms was evaluated by the area under the ROC curve (AUROC) on the test set of each hospital. We found that the best overall predictive performances were obtained when using training data from the same hospital, which was the winning strategy for 11 (61%) of the 18 participating hospitals. In this study, the use of more patient data from other regions slightly decreased predictive performance. However, models trained in other hospitals still had acceptable performances and could be a solution while data for a specific hospital is being collected.


Тема - темы
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Algorithms , Machine Learning , Outcome Assessment, Health Care , Retrospective Studies
16.
Nat Med ; 29(1): 49-58, 2023 01.
Статья в английский | MEDLINE | ID: covidwho-2185963

Реферат

Recently, advances in wearable technologies, data science and machine learning have begun to transform evidence-based medicine, offering a tantalizing glimpse into a future of next-generation 'deep' medicine. Despite stunning advances in basic science and technology, clinical translations in major areas of medicine are lagging. While the COVID-19 pandemic exposed inherent systemic limitations of the clinical trial landscape, it also spurred some positive changes, including new trial designs and a shift toward a more patient-centric and intuitive evidence-generation system. In this Perspective, I share my heuristic vision of the future of clinical trials and evidence-based medicine.


Тема - темы
COVID-19 , Humans , Evidence-Based Medicine , Machine Learning , Pandemics , Clinical Trials as Topic
17.
Nat Med ; 29(1): 47-48, 2023 01.
Статья в английский | MEDLINE | ID: covidwho-2185958
18.
J Med Virol ; 95(2): e28488, 2023 02.
Статья в английский | MEDLINE | ID: covidwho-2173241

Реферат

The Coronavirus disease 2019 (COVID-19) pandemic, caused by rapidly evolving variants of severe acute respiratory syndrome coronavirus (SARS-CoV-2), continues to be a global health threat. SARS-CoV-2 infection symptoms often intersect with other nonsevere respiratory infections, making early diagnosis challenging. There is an urgent need for early diagnostic and prognostic biomarkers to predict severity and reduce mortality when a sudden outbreak occurs. This study implemented a novel approach of integrating bioinformatics and machine learning algorithms over publicly available clinical COVID-19 transcriptome data sets. The robust 7-gene biomarker identified through this analysis can not only discriminate SARS-CoV-2 associated acute respiratory illness (ARI) from other types of ARIs but also can discriminate severe COVID-19 patients from nonsevere COVID-19 patients. Validation of the 7-gene biomarker in an independent blood transcriptome data set of longitudinal analysis of COVID-19 patients across various stages of the disease showed that the dysregulation of the identified biomarkers during severe disease is restored during recovery, showing their prognostic potential. The blood biomarkers identified in this study can serve as potential diagnostic candidates and help reduce COVID-19-associated mortality.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Transcriptome , Biomarkers , Machine Learning
19.
World J Gastroenterol ; 28(44): 6230-6248, 2022 Nov 28.
Статья в английский | MEDLINE | ID: covidwho-2163755

Реферат

The liver is a key organ involved in a wide range of functions, whose damage can lead to chronic liver disease (CLD). CLD accounts for more than two million deaths worldwide, becoming a social and economic burden for most countries. Among the different factors that can cause CLD, alcohol abuse, viruses, drug treatments, and unhealthy dietary patterns top the list. These conditions prompt and perpetuate an inflammatory environment and oxidative stress imbalance that favor the development of hepatic fibrogenesis. High stages of fibrosis can eventually lead to cirrhosis or hepatocellular carcinoma (HCC). Despite the advances achieved in this field, new approaches are needed for the prevention, diagnosis, treatment, and prognosis of CLD. In this context, the scientific com-munity is using machine learning (ML) algorithms to integrate and process vast amounts of data with unprecedented performance. ML techniques allow the integration of anthropometric, genetic, clinical, biochemical, dietary, lifestyle and omics data, giving new insights to tackle CLD and bringing personalized medicine a step closer. This review summarizes the investigations where ML techniques have been applied to study new approaches that could be used in inflammatory-related, hepatitis viruses-induced, and coronavirus disease 2019-induced liver damage and enlighten the factors involved in CLD development.


Тема - темы
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , Virus Diseases , Humans , COVID-19/epidemiology , Machine Learning
20.
Front Public Health ; 10: 1007205, 2022.
Статья в английский | MEDLINE | ID: covidwho-2163181

Реферат

Background: As the worldwide spread of coronavirus disease 2019 (COVID-19) continues for a long time, early prediction of the maximum severity is required for effective treatment of each patient. Objective: This study aimed to develop predictive models for the maximum severity of hospitalized COVID-19 patients using artificial intelligence (AI)/machine learning (ML) algorithms. Methods: The medical records of 2,263 COVID-19 patients admitted to 10 hospitals in Daegu, Korea, from February 18, 2020, to May 19, 2020, were comprehensively reviewed. The maximum severity during hospitalization was divided into four groups according to the severity level: mild, moderate, severe, and critical. The patient's initial hospitalization records were used as predictors. The total dataset was randomly split into a training set and a testing set in a 2:1 ratio, taking into account the four maximum severity groups. Predictive models were developed using the training set and were evaluated using the testing set. Two approaches were performed: using four groups based on original severity levels groups (i.e., 4-group classification) and using two groups after regrouping the four severity level into two (i.e., binary classification). Three variable selection methods including randomForestSRC were performed. As AI/ML algorithms for 4-group classification, GUIDE and proportional odds model were used. For binary classification, we used five AI/ML algorithms, including deep neural network and GUIDE. Results: Of the four maximum severity groups, the moderate group had the highest percentage (1,115 patients; 49.5%). As factors contributing to exacerbation of maximum severity, there were 25 statistically significant predictors through simple analysis of linear trends. As a result of model development, the following three models based on binary classification showed high predictive performance: (1) Mild vs. Above Moderate, (2) Below Moderate vs. Above Severe, and (3) Below Severe vs. Critical. The performance of these three binary models was evaluated using AUC values 0.883, 0.879, and, 0.887, respectively. Based on results for each of the three predictive models, we developed web-based nomograms for clinical use (http://statgen.snu.ac.kr/software/nomogramDaeguCovid/). Conclusions: We successfully developed web-based nomograms predicting the maximum severity. These nomograms are expected to help plan an effective treatment for each patient in the clinical field.


Тема - темы
COVID-19 , Humans , COVID-19/epidemiology , Artificial Intelligence , Hospitalization , Machine Learning , Neural Networks, Computer
Критерии поиска