Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 356
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Redox Biol ; 56: 102465, 2022 10.
Статья в английский | MEDLINE | ID: covidwho-2105815

Реферат

BACKGROUND: The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. METHODS: COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. RESULTS: Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. CONCLUSION: Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.


Тема - темы
COVID-19 , Antioxidants/metabolism , Electron Spin Resonance Spectroscopy , Free Radicals , Humans , Hydrogen Peroxide , Intercellular Adhesion Molecule-1/metabolism , Interleukin-17/metabolism , Nitrates , Nitrites , Oxidants/metabolism , Oxidation-Reduction , Oxidative Stress , RNA, Messenger/metabolism , Uric Acid , Vascular Cell Adhesion Molecule-1/metabolism
3.
Mol Divers ; 26(6): 3143-3155, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-2104017

Реферат

Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs.


Тема - темы
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Binding Sites , Molecular Dynamics Simulation , Protein Binding , Oxidative Stress
4.
Molecules ; 27(21)2022 Oct 28.
Статья в английский | MEDLINE | ID: covidwho-2090286

Реферат

Acute lung injury (ALI) is a kind of lung disease with acute dyspnea, pulmonary inflammation, respiratory distress, and non-cardiogenic pulmonary edema, accompanied by the mid- and end-stage characteristics of COVID-19, clinically. It is imperative to find non-toxic natural substances on preventing ALI and its complications. The animal experiments demonstrated that Lentinus edodes polysaccharides (PLE) had a potential role in alleviating ALI by inhibiting oxidative stress and inflammation, which was manifested by reducing the levels of serum lung injury indicators (C3, hs-CRP, and GGT), reducing the levels of inflammatory factors (TNF-α, IL-1ß, and IL-6), and increasing the activities of antioxidant enzymes (SOD and CAT) in the lung. Furthermore, PLE had the typical characteristics of pyran-type linked by ß-type glycosidic linkages. The conclusions indicated that PLE could be used as functional foods and natural drugs in preventing ALI.


Тема - темы
Acute Lung Injury , COVID-19 , Shiitake Mushrooms , Animals , Oxidative Stress , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Lung , Lipopolysaccharides
5.
Int J Mol Sci ; 23(21)2022 Oct 25.
Статья в английский | MEDLINE | ID: covidwho-2090203

Реферат

Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (MIS-C) is characterized by persistent fever and evidence of single or multiorgan dysfunction, and laboratory evidence of inflammation, elevated neutrophils, reduced lymphocytes, and low albumin. The pathophysiological mechanisms of MIS-C are still unknown. Proinflammatory mediators, including reactive oxygen species and decreased antioxidant enzymes, seems to play a central role. Virus entry activates NOXs and inhibits Nrf-2 antioxidant response inducing free radicals. The biological functions of nonphagocytic NOXs are still under study and appear to include: defense of epithelia, intracellular signaling mechanisms for growth regulation and cell differentiation, and post-translational modifications of proteins. This educational review has the aim of analyzing the newest evidence on the role of oxidative stress (OS) in MIS-C. Only by relating inflammatory mediators to OS evaluation in children following SARS-CoV-2 infection will it be possible to achieve a better understanding of these mechanisms and to reduce long-term morbidity. The link between inflammation and OS is key to developing effective prevention strategies with antioxidants to protect children.


Тема - темы
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/complications , Antioxidants/therapeutic use , Inflammation , Syndrome , Oxidative Stress
6.
Front Immunol ; 13: 1025495, 2022.
Статья в английский | MEDLINE | ID: covidwho-2080158

Реферат

Disorders of systemic metabolism can influence immunity. Individuals with obesity are known to have increased inflammation, increased risk to select autoimmune diseases, impaired response to several infections, and impaired vaccine response. For example, over the last decade, it has become clear that individuals with obesity have increased risk of morbidity and mortality from influenza infection. Unsurprisingly, this finding is also observed in the current COVID-19 pandemic: individuals with obesity, particularly severe obesity, have increased risk of poor outcomes from SARS-CoV-2 infection, including increased rates of hospitalization, ICU admission, mechanical ventilation, and death. Several studies have now demonstrated a critical role for T cells in the context of obesity-associated immune dysfunction in response to viral infection, and one mechanism for this may be altered T cell metabolism. Indeed, recent studies have shown that activated T cells from obese mice have an altered metabolic profile characterized by increased glucose oxidation, both in vitro and in vivo following viral infection. For that reason, treatments that target abnormal immune cell metabolism in obesity may improve outcomes to viral infection. To that end, several recent studies have shown that use of the metabolic drug, metformin, can reverse abnormal T cell metabolism and restore T cell immunity, as well as survival, in response to viral infection. These findings will be discussed in detail here.


Тема - темы
COVID-19 , Metformin , Animals , Mice , Humans , Pandemics , SARS-CoV-2 , T-Lymphocytes , Obesity/complications , Metformin/therapeutic use , Oxidative Stress , Glucose
7.
Nutrients ; 14(20)2022 Oct 14.
Статья в английский | MEDLINE | ID: covidwho-2071662

Реферат

The unpredictable nature of new variants of coronavirus 2 (SARS-CoV-2)-highly transmissible and some with vaccine-resistance, have led to an increased need for feasible lifestyle modifications as complementary therapies. Systemic inflammation is the common hallmark of communicable diseases like severe coronavirus disease 2019 (COVID-19) and non-communicable chronic diseases (NCDs) such as obesity, cardiovascular diseases (CVD), diabetes mellitus, and cancers, all for which mitigation of severe outcomes is of paramount importance. Dietary quality is associated with NCDs, and intermittent fasting (IF) has been suggested as an effective approach for treatment and prevention of some NCDs, similar to that of caloric restriction. There is a paucity of high-quality data from randomized controlled trials regarding the impact of IF and the intake of specific nutrients on inflammation and post-infection outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current review of recent literature was performed to explore the immunomodulatory roles of IF regimens and supplements involving the intake of specific nutrients including vitamins (A, B, C, D, and E), zinc, and nutraceuticals (n-3 polyunsaturated fatty acids, quercetin, and probiotics) on inflammatory and oxidative stress markers, with consideration of how they may be related to SARS-CoV-2.


Тема - темы
COVID-19 , Noncommunicable Diseases , Humans , SARS-CoV-2 , Fasting , Quercetin , Inflammation , Vitamins , Oxidative Stress , Zinc , Fatty Acids, Unsaturated
8.
Int J Mol Sci ; 23(20)2022 Oct 15.
Статья в английский | MEDLINE | ID: covidwho-2071513

Реферат

Platelet hyperreactivity and oxidative stress are the important causes of thrombotic disorders in patients with COVID-19. Oxidative stress, induced by the excessive generation of reactive oxygen species (ROS), could increase platelet function and the risk of thrombus formation. Coenzyme Q10 (CoQ10), exhibits strong antioxidative activity and anti-platelet effect. However, the effects and mechanisms of CoQ10 on attenuating platelet aggregation induced by spike protein have never been studied. This study aims to investigate whether the SARS-CoV-2 spike protein potentiates human platelet function via ROS signaling and the protective effect of CoQ10 in vitro. Using a series of platelet function assays, we found that spike protein potentiated platelet aggregation and oxidative stress, such as ROS level, mitochondrial membrane potential depolarization, and lipid damage level (MDA and 8-iso-PGF2α) in vitro. Furthermore, CoQ10 attenuated platelet aggregation induced by spike protein. As an anti-platelet mechanism, we showed that CoQ10 significantly decreased the excess production of ROS induced by spike protein. Our findings show that the protective effect of CoQ10 on spike protein-potentiated platelet aggregation is probably associated with its strong antioxidative ability.


Тема - темы
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , Reactive Oxygen Species/metabolism , Platelet Aggregation , COVID-19/drug therapy , SARS-CoV-2 , Ubiquinone/pharmacology , Ubiquinone/metabolism , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Lipids/pharmacology
9.
Biol Trace Elem Res ; 200(12): 5013-5021, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-2060053

Реферат

Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.


Тема - темы
COVID-19 , Trace Elements , Antioxidants/metabolism , Copper , Critical Illness , Hepcidins , Humans , Iron , Oxidants , Oxidative Stress , SARS-CoV-2 , Zinc
10.
Bull Exp Biol Med ; 173(5): 606-610, 2022 Sep.
Статья в английский | MEDLINE | ID: covidwho-2059913

Реферат

The indicators of spermatogenesis and the state of LPO and antioxidant protection in men with pathozoospermia after COVID-19 were assessed before and after treatment an antioxidant complex. Blood plasma served as the material for biochemical studies. In the examined patients, the parameters of spermatogenesis, as well as blood concentration of LPO components (diene conjugates and TBA-reactive substances) were analyzed. The total antioxidant activity of the blood was determined as an indicator characterizing the total activity of LPO inhibitors and determining its buffer capacity. In patients recovered from COVID-19, an increase in spermatogenesis disorders and shifts towards the predominance of prooxidant factors were observed. After a course (1 month) of antioxidant complex, patients showed increased sperm motility, decreased leukocyte count in the ejaculate, and restored balance in the prooxidant-antioxidant system towards antioxidant components. The effectiveness of correction of post-COVID disorders largely depends on the degree of damage to the structure and function of cell membranes caused by oxidative stress. The use of the antioxidant complex is a promising option, because it reduces the level of LPO, enhances antioxidant protection of the body, and also normalizes some parameters of spermatogenesis.


Тема - темы
Antioxidants , COVID-19 , Antioxidants/metabolism , Antioxidants/therapeutic use , COVID-19/drug therapy , Humans , Lipid Peroxidation/physiology , Male , Oxidative Stress/physiology , Reactive Oxygen Species , Sperm Motility , Spermatogenesis
11.
Acta Chim Slov ; 69(3): 564-570, 2022 Sep 26.
Статья в английский | MEDLINE | ID: covidwho-2056607

Реферат

Disbalance balance between oxidants and antioxidants is called oxidative stress and could be presented as oxidative stress index (OSI). OSI is determined by the reactive oxygen metabolites (d-ROM test) to assess oxidants and the plasma antioxidant capacity test (PAT test) to measure antioxidants. The aim of the study was to evaluate the predictive value of OSI in the disease COVID-19. d-ROMs results were the highest in the SARS-CoV-2 POSITIVE group (365+/-112), lower in the SARS-CoV-2 NEGATIVE group (314+/-72.4), and the lowest in an INTENSIVE CARE UNIT group (ICU) (277+/-142) U.Carr. PAT test values were the lowest in the SARS-CoV-2 POSITIVE group (2762+/-387), higher in the ICU group (2772 +/-786), and the highest in the SARS-CoV-2 NEGATIVE group (2808+/-470), and are not statistically significantly different (P>0.05), while OSI was: healthy with average value of 49 and the critical ill with average value of 109 (P = 0.016). Cut-offs for predicting ICUs admission was at OSI 62, with 80.0% sensitivity and 68.2% specificity.


Тема - темы
COVID-19 , Antioxidants/metabolism , COVID-19/diagnosis , Humans , Oxidants , Oxidative Stress , Oxygen , SARS-CoV-2
12.
PLoS One ; 17(10): e0268871, 2022.
Статья в английский | MEDLINE | ID: covidwho-2054305

Реферат

We aimed to evaluate the correlation of plasma levels of thiobarbituric acid reactive substances (TBARS) and reduced thiols with morbidity, mortality and immune response during and after SARS-CoV-2 infection. This was an observational study that included inpatients with SARS-CoV-2 infection older than 65 years. The individuals were followed up to the twelfth month post-discharge. Plasma levels of TBARS and reduced thiols were quantified as a measure of lipid and protein oxidation, respectively. Fatal and non-fatal events were evaluated during admission and at the third, sixth and twelfth month post-discharge. Differences in oxidative stress markers between the groups of interest, time to a negative RT-qPCR and time to significant anti-SARS-CoV-2 IgM titers were assessed. We included 61 patients (57% women) with a mean age of 83 years old. After multivariate analysis, we found differences in TBARS and reduced thiol levels between the comparison groups in fatal and non-fatal events during hospital admission. TBARS levels were also correlated with fatal events at the 6th and 12th months post-discharge. One year after hospital discharge, other predictors rather than oxidative stress markers were relevant in the models. The median time to reach significant anti-SARS-CoV-2 IgM titers was lower in patients with low levels of reduced thiols. Assessment of some parameters related to oxidative stress may help identify groups of patients with a higher risk of morbidity, mortality and delayed immune response during and after SARS-CoV-2 infection.


Тема - темы
COVID-19 , Aftercare , Aged , Aged, 80 and over , Antibodies, Viral , Biomarkers , Female , Humans , Immunoglobulin M , Lipids , Male , Oxidative Stress , Patient Discharge , Prognosis , SARS-CoV-2 , Sulfhydryl Compounds , Thiobarbituric Acid Reactive Substances/analysis
14.
Oxid Med Cell Longev ; 2022: 4032704, 2022.
Статья в английский | MEDLINE | ID: covidwho-2038371

Реферат

The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a "proof of principle" for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.


Тема - темы
COVID-19 , Respiratory Distress Syndrome , Sirtuins , Cytokines/metabolism , Fibrosis , Humans , Monoamine Oxidase/metabolism , NAD/metabolism , Oxidative Stress , Reactive Oxygen Species , Sirtuins/metabolism
15.
Ageing Res Rev ; 80: 101697, 2022 09.
Статья в английский | MEDLINE | ID: covidwho-2031135

Реферат

Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.


Тема - темы
Aging , Inflammation/metabolism , Interleukin-6 , Aging/physiology , Dose-Response Relationship, Immunologic , Gene Expression Regulation , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Oxidative Stress , Signal Transduction
16.
Mini Rev Med Chem ; 22(14): 1847-1875, 2022.
Статья в английский | MEDLINE | ID: covidwho-2029879

Реферат

Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems, such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties, such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine protease 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer antiproliferative agent, use against the coronavirus disease 2019 (COVID-19) and for treatment of other diseases.


Тема - темы
COVID-19 , Nigella sativa , Antiviral Agents/pharmacology , Benzoquinones , COVID-19/drug therapy , Humans , Molecular Docking Simulation , Nigella sativa/chemistry , Oxidative Stress
18.
Int J Mol Sci ; 23(17)2022 Sep 03.
Статья в английский | MEDLINE | ID: covidwho-2010113

Реферат

Oxidative stress induced by neutrophils and hypoxia in COVID-19 pneumonia leads to albumin modification. This may result in elevated levels of advanced oxidation protein products (AOPPs) and advanced lipoxidation end-products (ALEs) that trigger oxidative bursts of neutrophils and thus participate in cytokine storms, accelerating endothelial lung cell injury, leading to respiratory distress. In this study, sixty-six hospitalized COVID-19 patients with respiratory symptoms were studied. AOPPs-HSA was produced in vitro by treating human serum albumin (HSA) with chloramine T. The interaction of malondialdehyde with HSA was studied using time-resolved fluorescence spectroscopy. The findings revealed a significantly elevated level of AOPPs in COVID-19 pneumonia patients on admission to the hospital and one week later as long as they were in the acute phase of infection when compared with values recorded for the same patients 6- and 12-months post-infection. Significant negative correlations of albumin and positive correlations of AOPPs with, e.g., procalcitonin, D-dimers, lactate dehydrogenase, aspartate transaminase, and radiological scores of computed tomography (HRCT), were observed. The AOPPs/albumin ratio was found to be strongly correlated with D-dimers. We suggest that oxidized albumin could be involved in COVID-19 pathophysiology. Some possible clinical consequences of the modification of albumin are also discussed.


Тема - темы
Advanced Oxidation Protein Products , COVID-19 , Advanced Oxidation Protein Products/metabolism , Albumins/metabolism , Humans , Oxidation-Reduction , Oxidative Stress
19.
Int J Mol Sci ; 23(17)2022 Sep 02.
Статья в английский | MEDLINE | ID: covidwho-2010109

Реферат

SARS-CoV-2 negatively affects semen characteristics, impairs various biochemical processes in seminal fluid and within spermatogenic cells ultimately leading to male fertility decline. However, the distinct mechanisms, in particular, the role of oxidative stress on the consequences of coronavirus infection, have not been well investigated, which is the purpose of the present study. The standard semen parameters, its pro- and antioxidant system state, as well as the level of sperm DNA fragmentation, were assessed in 17 semen samples of men five months after the coronavirus infection and in 22 age-matched control patients. We determined that the DNA fragmentation rate negatively correlated with the period after coronavirus recovery, as well as seminal fluid superoxide dismutase activity and uric acid level. It was demonstrated that COVID-19 is not always associated with increased DNA fragmentation, allowing them to be considered as two independent factors. Thus, the most significant changes were noted in the samples of men after COVID-19 and abnormal TUNEL results: increased round cell number, decreased seminal fluid's nitrotyrosine level, and total antioxidant capacity and Zn, as well as an increased 8-hydroxy-2'-deoxyguanosine level within spermatozoa. The data obtained indicate that increased DNA fragmentation and diminished semen quality in men can be the result of an imbalance in semen pro- and antioxidant components after COVID-19.


Тема - темы
COVID-19 , Infertility, Male , 8-Hydroxy-2'-Deoxyguanosine , Antioxidants/metabolism , Biomarkers/metabolism , DNA Fragmentation , Humans , Infertility, Male/metabolism , Male , Oxidative Stress , SARS-CoV-2 , Semen/metabolism , Semen Analysis , Sperm Motility , Spermatozoa/metabolism
20.
Biochem J ; 479(16): 1653-1708, 2022 08 31.
Статья в английский | MEDLINE | ID: covidwho-2008338

Реферат

Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.


Тема - темы
Arthritis, Rheumatoid , COVID-19 , Fatigue Syndrome, Chronic , Reperfusion Injury , Arthritis, Rheumatoid/therapy , COVID-19/complications , Fatigue Syndrome, Chronic/metabolism , Humans , Oxidative Stress/physiology , Reperfusion Injury/therapy
Критерии поиска