Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 288
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Статья в английский | MEDLINE | ID: covidwho-1684541

Реферат

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Тема - темы
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
2.
J Leukoc Biol ; 111(1): 269-281, 2022 01.
Статья в английский | MEDLINE | ID: covidwho-1591653

Реферат

The immune system plays a crucial role in the response against severe acute respiratory syndrome coronavirus 2 with significant differences among patients. The study investigated the relationships between lymphocyte subsets, cytokines, and disease outcomes in patients with coronavirus disease 2019 (COVID-19). The measurements of peripheral blood lymphocytes subsets and cytokine levels were performed by flow cytometry for 57 COVID-19 patients. Patients were categorized into two groups according to the severity of the disease (nonsevere vs. severe). Total lymphocytes, T cells, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells were decreased in COVID-19 patients and statistical differences were found among different severity of illness and survival states (P ˂ 0.01). The levels of IL-6 and IL-10 were significantly higher in severe and death groups and negatively correlated with lymphocyte subsets counts. The percentages of Th17 in the peripheral blood of patients were higher than those of healthy controls whereas the percentages of Th2 were lower. For the severe cases, the area under receiver operating characteristic (ROC) curve of IL-6 was the largest among all the immune parameters (0.964; 95% confidence interval: 0.927-1.000, P < 0.0001). In addition, the preoperative IL-6 concentration of 77.38 pg/ml was the optimal cutoff value (sensitivity: 84.6%, specificity: 100%). Using multivariate logistic regression analysis and ROC curves, IL-6 > 106.44 pg/ml and CD8+ T cell counts <150 cells/µl were found to be associated with mortality. Measuring the immune parameters and defining a risk threshold can segregate patients who develop a severe disease from those with a mild pathology. The identification of these parameters may help clinicians to predict the outcome of the patients with high risk of unfavorable progress of the disease.


Тема - темы
COVID-19/blood , COVID-19/mortality , Interleukin-6/blood , Severity of Illness Index , Africa, Northern , Aged , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/metabolism , Female , Humans , Kaplan-Meier Estimate , Lymphocyte Count , Lymphocyte Subsets/immunology , Male , Middle Aged , Multivariate Analysis , Prognosis , Treatment Outcome
3.
Ann Med ; 53(1): 410-412, 2021 12.
Статья в английский | MEDLINE | ID: covidwho-1573909

Реферат

OBJECTIVE: Cytokine release syndrome is suggested to be the most important mechanism triggering acute respiratory distress syndrome and end organ damage in COVID-19. The severity of disease may be measured by different biomarkers. METHODS: We studied markers of inflammation and coagulation as recorded in 29 patients on admission to the hospital in order to identify markers of severe COVID-19 and need of ICU. RESULTS: Patients who were eventually admitted to ICU displayed significantly higher serum levels of interleukin-6 (IL-6), C-reactive protein (CRP), and procalcitonin. No statistical differences were found between the groups in median levels of lymphocytes, D-dimer or ferritin. CONCLUSIONS: IL-6 and CRP were the strongest predictors of severity in hospitalized patients with COVID-19.


Тема - темы
COVID-19/blood , COVID-19/diagnosis , Interleukin-6/blood , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Female , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
4.
Front Pharmacol ; 11: 614024, 2020.
Статья в английский | MEDLINE | ID: covidwho-1542362

Реферат

Sepsis-induced myocardial dysfunction is a major contributor to the poor outcomes of septic shock. As an add-on with conventional sepsis management for over 15 years, the effect of Xuebijing injection (XBJ) on the sepsis-induced myocardial dysfunction was not well understood. The material basis of Xuebijing injection (XBJ) in managing infections and infection-related complications remains to be defined. A murine cecal ligation and puncture (CLP) model and cardiomyocytes in vitro culture were adopted to study the influence of XBJ on infection-induced cardiac dysfunction. XBJ significantly improved the survival of septic-mice and rescued cardiac dysfunction in vivo. RNA-seq revealed XBJ attenuated the expression of proinflammatory cytokines and related signalings in the heart which was further confirmed on the mRNA and protein levels. Xuebijing also protected cardiomyocytes from LPS-induced mitochondrial calcium ion overload and reduced the LPS-induced ROS production in cardiomyocytes. The therapeutic effect of XBJ was mediated by the combination of paeoniflorin and hydroxysafflor yellow A (HSYA) (C0127-2). C0127-2 improved the survival of septic mice, protected their cardiac function and cardiomyocytes while balancing gene expression in cytokine-storm-related signalings, such as TNF-α and NF-κB. In summary, Paeoniflorin and HSYA are key active compounds in XBJ for managing sepsis, protecting cardiac function, and controlling inflammation in the cardiac tissue partially by limiting the production of IL-6, IL-1ß, and CXCL2.

5.
Lancet Respir Med ; 9(5): 522-532, 2021 05.
Статья в английский | MEDLINE | ID: covidwho-1537199

Реферат

BACKGROUND: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. METHODS: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. FINDINGS: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference -1·7 [-9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [-6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI -7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. INTERPRETATION: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. FUNDING: Sanofi and Regeneron Pharmaceuticals.


Тема - темы
Antibodies, Monoclonal, Humanized , COVID-19 , Cytokine Release Syndrome , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Distress Syndrome , SARS-CoV-2/isolation & purification , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Dose-Response Relationship, Drug , Drug Monitoring/methods , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , International Cooperation , Male , Middle Aged , Mortality , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Severity of Illness Index , Treatment Outcome
6.
Molecules ; 25(21)2020 Nov 02.
Статья в английский | MEDLINE | ID: covidwho-1389462

Реферат

Zebrafish has been a reliable model system for studying human viral pathologies. SARS-CoV-2 viral infection has become a global chaos, affecting millions of people. There is an urgent need to contain the pandemic and develop reliable therapies. We report the use of a humanized zebrafish model, xeno-transplanted with human lung epithelial cells, A549, for studying the protective effects of a tri-herbal medicine Coronil. At human relevant doses of 12 and 58 µg/kg, Coronil inhibited SARS-CoV-2 spike protein, induced humanized zebrafish mortality, and rescued from behavioral fever. Morphological and cellular abnormalities along with granulocyte and macrophage accumulation in the swim bladder were restored to normal. Skin hemorrhage, renal cell degeneration, and necrosis were also significantly attenuated by Coronil treatment. Ultra-high-performance liquid chromatography (UHPLC) analysis identified ursolic acid, betulinic acid, withanone, withaferine A, withanoside IV-V, cordifolioside A, magnoflorine, rosmarinic acid, and palmatine as phyto-metabolites present in Coronil. In A549 cells, Coronil attenuated the IL-1ß induced IL-6 and TNF-α cytokine secretions, and decreased TNF-α induced NF-κB/AP-1 transcriptional activity. Taken together, we show the disease modifying immunomodulatory properties of Coronil, at human equivalent doses, in rescuing the pathological features induced by the SARS-CoV-2 spike protein, suggesting its potential use in SARS-CoV-2 infectivity.


Тема - темы
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Plant Extracts/therapeutic use , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Air Sacs/drug effects , Air Sacs/virology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 , Chromatography, High Pressure Liquid/methods , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Disease Models, Animal , Fever/drug therapy , Fever/etiology , Hemorrhage/prevention & control , Humans , Interleukin-6/metabolism , Kidney/drug effects , Necrosis/pathology , Necrosis/prevention & control , Pandemics , Phytotherapy , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiratory Mucosa/transplantation , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/metabolism , Zebrafish
7.
Jpn J Infect Dis ; 74(4): 293-298, 2021 Jul 21.
Статья в английский | MEDLINE | ID: covidwho-1380101

Реферат

The prognostic value of interleukin-6 (IL-6) in coronavirus disease 2019 (COVID-19) needs to be clarified. In this retrospective study, COVID-19 patients treated at Renmin Hospital of Wuhan University from January 7 to February 8, 2020 with measurements of serum IL-6 levels within 1 week after admission were included. Data regarding demographics, clinical characteristics, laboratory tests, complications, and outcomes were collected and analyzed. Sixty-six patients diagnosed with COVID-19 were included in this study (31 patients were females). They were divided into a normal group (serum IL-6 <10 pg/mL, n = 35) and an abnormal group (serum IL-6 <10 pg/mL, n = 31). Compared with the normal group, the incidence of critical cases (P <0.001), acute respiratory distress syndrome (ARDS) (P = 0.001), acute cardiac injury (P = 0.002), cardiac insufficiency (P = 0.039), mechanical ventilation rate (P = 0.002), and mortality (P = 0.021) was significantly increased in the abnormal group. Serum IL-6 concentration was an independent predictor of fatal outcome (P = 0.04). The optimal cutoff value of serum IL-6 concentration for predicting fatal outcomes was 26.09 pg/mL (P <0.001). In COVID-19, elevated serum IL-6 levels were associated with critical illness, use of mechanical ventilation, and complications, including heart injury and ARDS, and could predict a fatal outcome. Early detection of serum IL-6 levels after admission should be necessary in COVID-19 patients.


Тема - темы
COVID-19/blood , COVID-19/mortality , Interleukin-6/blood , Adult , Aged , Aged, 80 and over , Critical Illness/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Morbidity , Prognosis , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/mortality , Retrospective Studies , SARS-CoV-2/pathogenicity
8.
J Med Virol ; 93(9): 5432-5437, 2021 Sep.
Статья в английский | MEDLINE | ID: covidwho-1363681

Реферат

This case series describes three patients affected by severe acute respiratory syndrome coronavirus 2, who developed polyradiculoneuritis as a probable neurological complication of coronavirus disease 2019 (COVID-19). A diagnosis of Guillain Barré syndrome was made on the basis of clinical symptoms, cerebrospinal fluid analysis, and electroneurography. In all of them, the therapeutic approach included the administration of intravenous immunoglobulin (0.4 gr/kg for 5 days), which resulted in the improvement of neurological symptoms. Clinical neurophysiology revealed the presence of conduction block, absence of F waves, and in two cases, a significant decrease in amplitude of compound motor action potential cMAP. Due to the potential role of inflammation on symptoms development and prognosis, interleukin-6 (IL-6) and IL-8 levels were measured in serum and cerebrospinal fluid during the acute phase, while only serum was tested after recovery. Both IL-6 and IL-8 were found increased during the acute phase, both in the serum and cerebrospinal fluid, whereas 4 months after admission (at complete recovery), only IL-8 remained elevated in the serum. These results confirm the inflammatory response that might be linked to peripheral nervous system complications and encourage the use of IL-6 and IL-8 as prognostic biomarkers in COVID-19.


Тема - темы
COVID-19/complications , Guillain-Barre Syndrome/complications , Interleukin-6/cerebrospinal fluid , Interleukin-8/cerebrospinal fluid , Respiratory Insufficiency/complications , SARS-CoV-2/pathogenicity , Action Potentials/drug effects , Acute Disease , Aged , Anti-Bacterial Agents/therapeutic use , Biomarkers/blood , Biomarkers/cerebrospinal fluid , COVID-19/cerebrospinal fluid , COVID-19/drug therapy , COVID-19/virology , Convalescence , Darunavir/therapeutic use , Drug Combinations , Guillain-Barre Syndrome/cerebrospinal fluid , Guillain-Barre Syndrome/drug therapy , Guillain-Barre Syndrome/virology , Humans , Hydroxychloroquine/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Interleukin-6/blood , Interleukin-8/blood , Lopinavir/therapeutic use , Male , Neural Conduction/drug effects , Peripheral Nervous System/drug effects , Peripheral Nervous System/pathology , Peripheral Nervous System/virology , Prognosis , Respiratory Insufficiency/cerebrospinal fluid , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects
9.
Lancet Respir Med ; 9(7): 755-762, 2021 07.
Статья в английский | MEDLINE | ID: covidwho-1337041

Реферат

BACKGROUND: We sought to clarify the benefit of cytokine adsorption in patients with COVID-19 supported with venovenous extracorporeal membrane oxygenation (ECMO). METHODS: We did a single-centre, open-label, randomised, controlled trial to investigate cytokine adsorption in adult patients with severe COVID-19 pneumonia requiring ECMO. Patients with COVID-19 selected for ECMO at the Freiburg University Medical Center (Freiburg, Germany) were randomly assigned (1:1) to receive cytokine adsorption using the CytoSorb device or not. Randomisation was computer-generated, allocation was concealed by opaque, sequentially numbered sealed envelopes. The CytoSorb device was incorporated into the ECMO circuit before connection to the patient circuit, replaced every 24 h, and removed after 72 h. The primary endpoint was serum interleukin-6 (IL-6) concentration 72 h after initiation of ECMO analysed by intention to treat. Secondary endpoints included 30-day survival. The trial is registered with ClinicalTrials.gov (NCT04324528) and the German Clinical Trials Register (DRKS00021300) and is closed. FINDINGS: From March 29, 2020, to Dec 29, 2020, of 34 patients assessed for eligibility, 17 (50%) were treated with cytokine adsorption and 17 (50%) without. Median IL-6 decreased from 357·0 pg/mL to 98·6 pg/mL in patients randomly assigned to cytokine adsorption and from 289·0 pg/mL to 112·0 pg/mL in the control group after 72 h. One patient in each group died before 72 h. Adjusted mean log IL-6 concentrations after 72 h were 0·30 higher in the cytokine adsorption group (95% CI -0·70 to 1·30, p=0·54). Survival after 30 days was three (18%) of 17 with cytokine adsorption and 13 (76%) of 17 without cytokine adsorption (p=0·0016). INTERPRETATION: Early initiation of cytokine adsorption in patients with severe COVID-19 and venovenous ECMO did not reduce serum IL-6 and had a negative effect on survival. Cytokine adsorption should not be used during the first days of ECMO support in COVID-19. FUNDING: None.


Тема - темы
COVID-19/therapy , Cytokines , Extracorporeal Membrane Oxygenation , Adsorption , Adult , Aged , Female , Humans , Male , Middle Aged
10.
J Biol Chem ; 296: 100630, 2021.
Статья в английский | MEDLINE | ID: covidwho-1333548

Реферат

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Тема - темы
Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Immunologic Factors/pharmacology , Interleukin-18/genetics , Receptors, Interleukin-18/genetics , Anti-Inflammatory Agents/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , COVID-19/drug therapy , Candida albicans/growth & development , Candida albicans/pathogenicity , Gene Expression Regulation , HEK293 Cells , Humans , Immunologic Factors/biosynthesis , Inflammation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-18/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophage Activation Syndrome/drug therapy , NF-kappa B/genetics , NF-kappa B/immunology , Primary Cell Culture , Receptors, Interleukin-18/antagonists & inhibitors , Receptors, Interleukin-18/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
11.
Hepatology ; 73(5): 1688-1700, 2021 05.
Статья в английский | MEDLINE | ID: covidwho-1332969

Реферат

BACKGROUND AND AIMS: Alcohol use disorder (AUD) is associated with microbial alterations that worsen with cirrhosis. Fecal microbiota transplant (FMT) could be a promising approach. APPROACH AND RESULTS: In this phase 1, double-blind, randomized clinical trial, patients with AUD-related cirrhosis with problem drinking (AUDIT-10 > 8) were randomized 1:1 into receiving one placebo or FMT enema from a donor enriched in Lachnospiraceae and Ruminococcaceae. Six-month safety was the primary outcome. Alcohol craving questionnaire, alcohol consumption (urinary ethylglucuronide/creatinine), quality of life, cognition, serum IL-6 and lipopolysaccharide-binding protein, plasma/stool short-chain fatty acids (SCFAs), and stool microbiota were tested at baseline and day 15. A 6-month follow-up with serious adverse event (SAE) analysis was performed. Twenty patients with AUD-related cirrhosis (65 ± 6.4 years, all men, Model for End-Stage Liver Disease 8.9 ± 2.7) with similar demographics, cirrhosis, and AUD severity were included. Craving reduced significantly in 90% of FMT versus 30% in placebo at day 15 (P = 0.02) with lower urinary ethylglucuronide/creatinine (P = 0.03) and improved cognition and psychosocial quality of life. There was reduction in serum IL-6 and lipopolysaccharide-binding protein and increased butyrate/isobutyrate compared with baseline in FMT but not placebo. Microbial diversity increased with higher Ruminococcaceae and other SCFAs, producing taxa following FMT but not placebo, which were linked with SCFA levels. At 6 months, patients with any SAEs (8 vs. 2, P = 0.02), AUD-related SAEs (7 vs. 1, P = 0.02), and SAEs/patient (median [interquartile range], 1.5 [1.25] vs. 0 [0.25] in FMT, P = 0.02) were higher in placebo versus FMT. CONCLUSIONS: This phase 1 trial shows that FMT is safe and associated with short-term reduction in alcohol craving and consumption with favorable microbial changes versus placebo in patients with alcohol-associated cirrhosis with alcohol misuse. There was also a reduction in AUD-related events over 6 months in patients assigned to FMT.


Тема - темы
Alcoholism/therapy , Fecal Microbiota Transplantation , Aged , Alcohol Drinking/epidemiology , Craving , Double-Blind Method , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome , Humans , Male , Middle Aged , Surveys and Questionnaires , Treatment Outcome
12.
Nat Med ; 27(3): 546-559, 2021 03.
Статья в английский | MEDLINE | ID: covidwho-1319033

Реферат

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Тема - темы
COVID-19/epidemiology , COVID-19/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/physiology , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/statistics & numerical data , Virus Internalization , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Datasets as Topic/statistics & numerical data , Demography , Female , Gene Expression Profiling/statistics & numerical data , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Organ Specificity/genetics , Respiratory System/metabolism , Respiratory System/virology , Sequence Analysis, RNA/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis/methods
13.
Int J Mol Sci ; 22(8)2021 Apr 17.
Статья в английский | MEDLINE | ID: covidwho-1298166

Реферат

The virus responsible for the current COVID-19 pandemic is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a new virus with high infectivity and moderate mortality. The major clinical manifestation of COVID-19 is interstitial pneumonia, which may progress to acute respiratory distress syndrome (ARDS). However, the disease causes a potent systemic hyperin-flammatory response, i.e., a cytokine storm or macrophage activation syndrome (MAS), which is associated with thrombotic complications. The complexity of the disease requires appropriate intensive treatment. One of promising treatment is statin administration, these being 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that exert pleiotropic anti-inflammatory effects. Recent studies indicate that statin therapy is associated with decreased mortality in COVID-19, which may be caused by direct and indirect mechanisms. According to literature data, statins can limit SARS-CoV-2 cell entry and replication by inhibiting the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). The cytokine storm can be ameliorated by lowering serum IL-6 levels; this can be achieved by inhibiting Toll-like receptor 4 (TLR4) and modulating macrophage activity. Statins can also reduce the complications of COVID-19, such as thrombosis and pulmonary fibrosis, by reducing serum PAI-1 levels, attenuating TGF-ß and VEGF in lung tissue, and improving endothelial function. Despite these benefits, statin therapy may have side effects that should be considered, such as elevated creatinine kinase (CK), liver enzyme and serum glucose levels, which are already elevated in severe COVID-19 infection. The present study analyzes the latest findings regarding the benefits and limitations of statin therapy in patients with COVID-19.


Тема - темы
COVID-19/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Animals , COVID-19/complications , Endothelium/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Inflammation/complications , Inflammation/drug therapy , Lipid Metabolism/drug effects , Macrophage Activation/drug effects , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , SARS-CoV-2/drug effects , Thrombosis/complications , Thrombosis/drug therapy
14.
Lancet Respir Med ; 9(6): 643-654, 2021 06.
Статья в английский | MEDLINE | ID: covidwho-1291133

Реферат

Circulating concentrations of the pleiotropic cytokine interleukin-6 (IL-6) are known to be increased in pro-inflammatory critical care syndromes, such as sepsis and acute respiratory distress syndrome. Elevations in serum IL-6 concentrations in patients with severe COVID-19 have led to renewed interest in the cytokine as a therapeutic target. However, although the pro-inflammatory properties of IL-6 are widely known, the cytokine also has a series of important physiological and anti-inflammatory functions. An adequate understanding of the complex processes by which IL-6 signalling occurs is crucial for the correct interpretation of IL-6 concentrations in the blood or lung, the use of IL-6 as a critical care biomarker, or the design of effective anti-IL-6 strategies. Here, we outline the role of IL-6 in health and disease, explain the different types of IL-6 signalling and their contribution to the net biological effect of the cytokine, describe the approaches to IL-6 inhibition that are currently available, and discuss implications for the future use of treatments such as tocilizumab in the critical care setting.


Тема - темы
Antibodies, Monoclonal, Humanized , COVID-19 , Interleukin-6 , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Biomarkers/blood , COVID-19/immunology , COVID-19/physiopathology , COVID-19/therapy , Critical Illness , Humans , Immunologic Factors/immunology , Immunologic Factors/pharmacology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , SARS-CoV-2
15.
Commun Biol ; 4(1): 631, 2021 05 27.
Статья в английский | MEDLINE | ID: covidwho-1283664

Реферат

IL22 is an important cytokine involved in the intestinal defense mechanisms against microbiome. By using ileum-derived organoids, we show that the expression of anti-microbial peptides (AMPs) and anti-viral peptides (AVPs) can be induced by IL22. In addition, we identified a bacterial and a viral route, both leading to IL22 production by T cells, but via different pathways. Bacterial products, such as LPS, induce enterocyte-secreted SAA1, which triggers the secretion of IL6 in fibroblasts, and subsequently IL22 in T cells. This IL22 induction can then be enhanced by macrophage-derived TNFα in two ways: by enhancing the responsiveness of T cells to IL6 and by increasing the expression of IL6 by fibroblasts. Viral infections of intestinal cells induce IFNß1 and subsequently IL7. IFNß1 can induce the expression of IL6 in fibroblasts and the combined activity of IL6 and IL7 can then induce IL22 expression in T cells. We also show that IL22 reduces the expression of viral entry receptors (e.g. ACE2, TMPRSS2, DPP4, CD46 and TNFRSF14), increases the expression of anti-viral proteins (e.g. RSAD2, AOS, ISG20 and Mx1) and, consequently, reduces the viral infection of neighboring cells. Overall, our data indicates that IL22 contributes to the innate responses against both bacteria and viruses.


Тема - темы
Interleukins/biosynthesis , Interleukins/metabolism , Animals , Anti-Bacterial Agents/metabolism , Antiviral Agents/metabolism , Cell Culture Techniques , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Enterocytes/immunology , Enterocytes/metabolism , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Interleukins/immunology , Intestinal Mucosa/metabolism , Intestines/physiology , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organoids/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism
16.
Int J Mol Sci ; 22(11)2021 May 24.
Статья в английский | MEDLINE | ID: covidwho-1273453

Реферат

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Тема - темы
Acute Lung Injury/drug therapy , Amides/pharmacology , Cytokines/metabolism , Ethanolamines/pharmacology , MAP Kinase Signaling System/drug effects , Palmitic Acids/pharmacology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Amides/therapeutic use , Animals , Ethanolamines/therapeutic use , Immunohistochemistry , Inflammation/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Male , Mast Cells/drug effects , Mast Cells/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Palmitic Acids/therapeutic use , Peroxidase/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Mol Med Rep ; 24(2)2021 Aug.
Статья в английский | MEDLINE | ID: covidwho-1271003

Реферат

Coronavirus disease 2019 (COVID­19), caused by the severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), led to an outbreak of viral pneumonia in December 2019. The present study aimed to investigate the host inflammatory response signature­caused by SARS­CoV­2 in human corneal epithelial cells (HCECs). The expression level of angiotensin­converting enzyme 2 (ACE2) in the human cornea was determined via immunofluorescence. In vitro experiments were performed in HCECs stimulated with the SARS­CoV­2 spike protein. Moreover, the expression levels of ACE2, IL­8, TNF­α, IL­6, gasdermin D (GSDMD) and IL­1ß in HCECs were detected using reverse transcription­quantitative PCR and/or western blotting. It was identified that ACE2 was expressed in normal human corneal epithelium and HCECs cultured in vitro. Furthermore, the expression levels of IL­8, TNF­α and IL­6 in HCECs were decreased following SARS­CoV­2 spike protein stimulation, while the expression levels of GSDMD and IL­1ß were increased. In conclusion, the present results demonstrated that the SARS­CoV­2 spike protein suppressed the host inflammatory response and induced pyroptosis in HCECs. Therefore, blocking the ACE2 receptor in HCECs may reduce the infection rate of COVID­19.


Тема - темы
Epithelium, Corneal/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cells, Cultured , Cornea/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Epithelium, Corneal/virology , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pyroptosis , Spike Glycoprotein, Coronavirus/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
18.
J Investig Med High Impact Case Rep ; 9: 23247096211019557, 2021.
Статья в английский | MEDLINE | ID: covidwho-1262488

Реферат

An outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2, initially in December 2019 at Wuhan, China, subsequently spread around the world. We describe a case series of COVID-19 patients treated at our academic medical center with focus on cytokine storm and potential therapeutic role of tocilizumab. A 59-year-old female admitted for shortness of breath (SOB), productive cough, fever, and nausea in the setting of COVID-19 pneumonia. Oxygen saturation was 81% necessitating supplemental oxygen. She was transferred to intensive care unit (ICU) for worsening hypoxia; intubated and received tocilizumab following which her oxygen requirements improved. A 52-year-old female admitted from an outside hospital with SOB, intubated for worsening hypoxia, in the setting of COVID-19 pneumonia. She received tocilizumab 400 mg intravenous for 2 doses on ICU admission, with clinical improvement. A 56-year-old female hospitalized with worsening SOB, fever, and cough for 8 days saturating 88% on room air in the setting of COVID-19 pneumonia. Worsening hypoxia necessitated high flow nasal cannula. She was transferred to the ICU where she received 2 doses of tocilizumab 400 mg intravenous. She did not require intubation and was transitioned to nasal cannula. A hyperinflammatory syndrome may cause a life-threatening acute respiratory distress syndrome in patients with COVID-19 pneumonia. Tocilizumab is the first marketed interleukin-6 blocking antibody, and through targeting interleukin-6 receptors likely has a role in treating cytokine storm. We noted clinical improvement of patients treated with tocilizumab.


Тема - темы
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Distress Syndrome/drug therapy , COVID-19/diagnostic imaging , COVID-19/drug therapy , Critical Care , Cytokine Release Syndrome/diagnostic imaging , Cytokine Release Syndrome/etiology , Female , Humans , Lung/diagnostic imaging , Middle Aged , Oxygen Inhalation Therapy , Pennsylvania , Respiratory Distress Syndrome/diagnostic imaging , SARS-CoV-2 , Trauma Centers
19.
J Allergy Clin Immunol ; 148(2): 368-380.e3, 2021 08.
Статья в английский | MEDLINE | ID: covidwho-1260767

Реферат

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to a variety of clinical outcomes, ranging from the absence of symptoms to severe acute respiratory disease and ultimately death. A feature of patients with severe coronavirus disease 2019 (COVID-19) is the abundance of inflammatory cytokines in the blood. Elevated levels of cytokines are predictive of infection severity and clinical outcome. In contrast, studies aimed at defining the driving forces behind the inflammation in lungs of subjects with severe COVID-19 remain scarce. OBJECTIVE: Our aim was to analyze and compare the plasma and bronchoalveolar lavage (BAL) fluids of patients with severe COVID-19 (n = 45) for the presence of cytokines and lipid mediators of inflammation (LMIs). METHODS: Cytokines were measured by using Luminex multiplex assay, and LMIs were measured by using liquid chromatography-tandem mass spectrometry. RESULTS: We revealed high concentrations of numerous cytokines, chemokines, and LMIs in the BAL fluid of patients with severe COVID-19. Of the 13 most abundant mediators in BAL fluid, 11 were chemokines, with CXCL1 and CXCL8 being 200 times more abundant than IL-6 and TNF-α. Eicosanoid levels were also elevated in the lungs of subjects with severe COVID-19. Consistent with the presence chemotactic molecules, BAL fluid samples were enriched for neutrophils, lymphocytes, and eosinophils. Inflammatory cytokines and LMIs in plasma showed limited correlations with those present in BAL fluid, arguing that circulating inflammatory molecules may not be a reliable proxy of the inflammation occurring in the lungs of patients with severe COVID-19. CONCLUSIONS: Our findings indicate that hyperinflammation of the lungs of patients with severe COVID-19 is fueled by excessive production of chemokines and eicosanoids. Therapeutic strategies to dampen inflammation in patients with COVID-19 should be tailored accordingly.


Тема - темы
COVID-19/immunology , Cytokines/immunology , Eicosanoids/immunology , Inflammation/immunology , Lung/immunology , SARS-CoV-2 , Adult , Aged , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/blood , Cytokines/blood , Female , Humans , Inflammation/blood , Lung/cytology , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Severity of Illness Index
20.
Virol J ; 18(1): 117, 2021 06 04.
Статья в английский | MEDLINE | ID: covidwho-1259206

Реферат

BACKGROUND: To date, specific cytokines associated with development of acute respiratory distress syndrome (ARDS) and extrapulmonary multiple organ dysfunction (MOD) in COVID-19 patients have not been systematically described. We determined the levels of inflammatory cytokines in patients with COVID-19 and their relationships with ARDS and extrapulmonary MOD. METHODS: The clinical and laboratory data of 94 COVID-19 patients with and without ARDS were analyzed. The levels of inflammatory cytokines (interleukin 6 [IL-6], IL-8, IL-10, and tumor necrosis factor α [TNF-α]) were measured on days 1, 3, and 5 following admission. Seventeen healthy volunteers were recruited as controls. Correlations in the levels of inflammatory cytokines with clinical and laboratory variables were analyzed, furthermore, we also explored the relationships of different cytokines with ARDS and extrapulmonary MOD. RESULTS: The ARDS group had higher serum levels of all 4 inflammatory cytokines than the controls, and these levels steadily increased after admission. The ARDS group also had higher levels of IL-6, IL-8, and IL-10 than the non-ARDS group, and the levels of these cytokines correlated significantly with coagulation parameters and disseminated intravascular coagulation (DIC). The levels of IL-6 and TNF-α correlated with the levels of creatinine and urea nitrogen, and were also higher in ARDS patients with acute kidney injury (AKI). All 4 inflammatory cytokines had negative correlations with PaO2/FiO2. IL-6, IL-8, and TNF-α had positive correlations with the APACHE-II score. Relative to survivors, non-survivors had higher levels of IL-6 and IL-10 at admission, and increasing levels over time. CONCLUSIONS: The cytokine storm apparently contributed to the development of ARDS and extrapulmonary MOD in COVID-19 patients. The levels of IL-6, IL-8, and IL-10 correlated with DIC, and the levels of IL-6 and TNF-α were associated with AKI. Relative to survivors, patients who died within 28 days had increased levels of IL-6 and IL-10.


Тема - темы
COVID-19/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Respiratory Distress Syndrome/blood , Acute Kidney Injury/diagnosis , Aged , Blood Urea Nitrogen , COVID-19/pathology , Creatinine/blood , Cytokine Release Syndrome/diagnosis , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/pathology , Female , Humans , Interleukin-10/blood , Interleukin-6/blood , Interleukin-8/blood , Male , Respiratory Distress Syndrome/pathology , Retrospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha/blood
Критерии поиска