Your browser doesn't support javascript.
All-fiber pyro- and piezo-electric nanogenerator for IoT based self-powered health-care monitoring
Materials Advances ; : 10, 2021.
Article in English | Web of Science | ID: covidwho-1269395
ABSTRACT
In this work, an all-fiber pyro- and piezo-electric nanogenerator (PPNG) is designed using multiwall carbon nanotube (MWCNT) doped poly(vinylidene fluoride) (PVDF) electrospun nanofibers as the active layer and an interlocked conducting micro-fiber based electrode for converting both thermal and mechanical energies into useful electrical power. The PPNG generates high electrical throughput (output voltage similar to 35 V, maximum power density similar to 34 mu W cm(-2) and power conversion efficiency (eta(piezo)) similar to 19.3%) with an ultra-fast response time of similar to 10 ms. Owing to the higher piezoelectric charge co-efficient (;d(33);similar to 51.3 pC N-1) and figure of merit (FoM approximate to 5.95 x 10(-11) Pa-1) of PVDF-MWCNT nanofibers in comparison to the neat PVDF nanofibers (;d(33);similar to 22 pC N-1 and FoM approximate to 9.7 x 10(-12) Pa-1) the PPNG operates a range of consumer electronic components such as capacitors and light emitting diodes. Furthermore, the electroactive phase content (similar to 87%) is improved in the active layer due to the interfacial interaction between the surface charges at from the pi-electron cloud of the MWCNT and -CH2- dipoles of the PVDF chain. Additionally, the PVDF-MWCNT nanofibers possess fifteen times higher pyroelectric coefficient (similar to 60 nC m(-2) K-1) compared to that of neat PVDF nanofibers (4 nC m(-2) K-1). As a result, the PPNG is capable of converting very large temperature fluctuations (Delta T similar to 14.30 K) to electrical energy (such as the open-circuit voltage of 250 mV and a short-circuit current of 83 pA). Besides this, it is capable of detecting very low-level thermal fluctuations (as low as Delta T similar to 5.4 K) with responsivity of similar to 1.48 s and possesses very high mechano-sensitivity (similar to 7.5 V kPa(-1)) which makes it feasible for use as a biomedical sensor since the body temperature and bio-mechanical signals (such as breathing temperature, pulse rate, vocal cord vibrations, coughing sound, and so on) have an immense signature of health conditions. As a proof-of-concept, the all-fiber PPNG is employed as a biomedical sensor by integrating with the Internet of Things (IoT) based human health care monitoring system as well as for remote care of infectious diseases (e.g., applicable for pneumonia, COVID-19) by transferring the pulse response, body temperature, coughing and laughing response wirelessly to a smartphone.

Full text: Available Collection: Databases of international organizations Database: Web of Science Language: English Journal: Materials Advances Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Web of Science Language: English Journal: Materials Advances Year: 2021 Document Type: Article