Your browser doesn't support javascript.
Mobility in post-pandemic economic reopening under social distancing guidelines: Congestion, emissions, and contact exposure in public transit.
Wang, Ding; Tayarani, Mohammad; Yueshuai He, Brian; Gao, Jingqin; Chow, Joseph Y J; Oliver Gao, H; Ozbay, Kaan.
  • Wang D; C2SMART University Transportation Center, New York University Tandon School of Engineering, Brooklyn, NY, USA.
  • Tayarani M; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
  • Yueshuai He B; Center for Transportation, Environment, and Community Health, Cornell University, Ithaca, NY, USA.
  • Gao J; C2SMART University Transportation Center, New York University Tandon School of Engineering, Brooklyn, NY, USA.
  • Chow JYJ; Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, USA.
  • Oliver Gao H; C2SMART University Transportation Center, New York University Tandon School of Engineering, Brooklyn, NY, USA.
  • Ozbay K; C2SMART University Transportation Center, New York University Tandon School of Engineering, Brooklyn, NY, USA.
Transp Res Part A Policy Pract ; 153: 151-170, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1415809
ABSTRACT
COVID-19 has raised new challenges for transportation in the post-pandemic era. The social distancing requirement, with the aim of reducing contact risk in public transit, could exacerbate traffic congestion and emissions. We propose a simulation tool to evaluate the trade-offs between traffic congestion, emissions, and policies impacting travel behavior to mitigate the spread of COVID-19 including social distancing and working from home. Open-source agent-based simulation models are used to evaluate the transportation system usage for the case study of New York City. A Post Processing Software for Air Quality (PPS-AQ) estimation is used to evaluate the air quality impacts. Finally, system-wide contact exposure on the subway is estimated from the traffic simulation output. The social distancing requirement in public transit is found to be effective in reducing contact exposure, but it has negative congestion and emission impacts on Manhattan and neighborhoods at transit and commercial hubs. While telework can reduce congestion and emissions citywide, in Manhattan the negative impacts are higher due to behavioral inertia and social distancing. The findings suggest that contact exposure to COVID-19 on subways is relatively low, especially if social distancing practices are followed. The proposed integrated traffic simulation models and air quality estimation model can help policymakers evaluate the impact of policies on traffic congestion and emissions as well as identifying hot spots, both temporally and spatially.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Language: English Journal: Transp Res Part A Policy Pract Year: 2021 Document Type: Article Affiliation country: J.tra.2021.09.005

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Language: English Journal: Transp Res Part A Policy Pract Year: 2021 Document Type: Article Affiliation country: J.tra.2021.09.005