Your browser doesn't support javascript.
Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease.
Jin, Zhicheng; Yeung, Justin; Zhou, Jiajing; Cheng, Yong; Li, Yi; Mantri, Yash; He, Tengyu; Yim, Wonjun; Xu, Ming; Wu, Zhuohong; Fajtova, Pavla; Creyer, Matthew N; Moore, Colman; Fu, Lei; Penny, William F; O'Donoghue, Anthony J; Jokerst, Jesse V.
  • Jin Z; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Yeung J; Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.
  • Zhou J; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Cheng Y; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Li Y; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Mantri Y; Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.
  • He T; Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States.
  • Yim W; Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States.
  • Xu M; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Wu Z; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Fajtova P; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States.
  • Creyer MN; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Moore C; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Fu L; Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
  • Penny WF; Division of Cardiology, University of California San Diego, San Diego, California 92161, United States.
  • O'Donoghue AJ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States.
  • Jokerst JV; Department of NanoEngineering, Materials Science and Engineering Program, and Department of Radiology, University of California San Diego, La Jolla, California 92093, United States.
Chem Mater ; 34(3): 1259-1268, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1655408
ABSTRACT
There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2-(AA)x-(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing-the presence of viral proteases in biofluids is validated.

Full text: Available Collection: International databases Database: MEDLINE Language: English Journal: Chem Mater Year: 2022 Document Type: Article Affiliation country: Acs.chemmater.1c03871

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Language: English Journal: Chem Mater Year: 2022 Document Type: Article Affiliation country: Acs.chemmater.1c03871