Your browser doesn't support javascript.
SARS-CoV-2 Infection Increases the Gene Expression Profile for Alzheimer's Disease Risk
Cell Transplantation ; 32:15-16, 2023.
Article in English | EMBASE | ID: covidwho-2324818
ABSTRACT
The COVID-19 pandemic is a global outbreak of coronavirus, an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One in five adults who have had COVID-19 in the past was still experiencing any one of the symptoms of long COVID like headache, brain fog, fatigue, and shortness of breath. Up to 30% of individuals with mild to severe infection show diverse neurological symptoms, including dementias. Hence, it is very much important to characterize the neurotropism and neurovirulence of the SARS-CoV-2 virus. This helps us understand the mechanisms involved in initiating inflammation in the brain, further leading to the development of earlyonset Alzheimer's disease and related dementias (ADRDs). In our brain gene expression analysis, we found that severe COVID-19 patients showed increased expression of innate immune response genes and genes that are implicated in AD pathogenesis. To study the infection-induced ADRDs, we used a mouse-adapted strain of the SARS-CoV-2 (MA10) virus to infect mice of different age groups (3, 6, and 20 Months). In this study, we found that aged mice showed evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferoninducible gene Ifi204, and complement genes like C4 and C5AR1. Brain histopathology also showed the AD signature including tau-phosphorylation, tau-oligomerization, and alpha-synuclein expression in aged MA10-infected mice. The results from gene expression profiling of SARS-CoV-2 infected and AD brains and studies with MA10 aged mice show that COVID-19 infection increases the risk of AD in the aged population. Furthermore, this study helps us to understand the crucial molecular markers that are regulated during COVID infection that could act as major players in developing ADRDs. Future studies will be involved in understanding the molecular mechanisms of ADRD in response to COVID infection and developing novel therapies targeting AD.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Type of study: Experimental Studies / Prognostic study / Randomized controlled trials Topics: Long Covid Language: English Journal: Cell Transplantation Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Type of study: Experimental Studies / Prognostic study / Randomized controlled trials Topics: Long Covid Language: English Journal: Cell Transplantation Year: 2023 Document Type: Article