Your browser doesn't support javascript.
ABSTRACT
The COVID-19 pandemic caused by the emergent SARS-CoV-2 coronavirus threatens global public health and there is an urgent need to develop safe and effective vaccines. Here we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV2. We show that our vaccine candidate, GRAd- COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies which neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, Th1- dominated cellular response in the periphery and in the lung. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV2 neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of GRAd-COV2 vaccine in a currently ongoing Phase I clinical trial (NCT04528641).
Sujets)

Texte intégral: Disponible Collection: Preprints Base de données: bioRxiv Sujet Principal: COVID-19 langue: Anglais Année: 2020 Type de document: Preprint

Documents relatifs à ce sujet

MEDLINE

...
LILACS

LIS


Texte intégral: Disponible Collection: Preprints Base de données: bioRxiv Sujet Principal: COVID-19 langue: Anglais Année: 2020 Type de document: Preprint