Your browser doesn't support javascript.
Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
Pure and Applied Chemistry ; 0(0):10, 2022.
Artigo em Inglês | Web of Science | ID: covidwho-1765566
ABSTRACT
From the receptor-binding domain (RBD) of the SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19), a RBD-hFc fusion protein was obtained at the Center of Molecular Immunology (Havana, Cuba). This fusion protein was used in the construction of a diagnostic device for COVID-19 called Ultramicroenzyme-Linked Immunosorbent Assay (UMELISA)-SARS-CoV-2-IgG and it is currently been used in the studies of biological activity of the Cuban vaccine Abdala (CIGB-66). In this work, Circular Dichroism (CD) is used to characterize this protein. Using Far Ultraviolet Circular Dichroism (FAR-UV CD), it was determined that the protein has a secondary structure in the form of a sheet-beta fundamentally. Using this technique, a thermodynamic study was carried out and it was determined that the melting temperature (Tm) of the protein is 71.5 degrees C. Information about the tertiary structure of the protein was obtained using Near Ultraviolet Circular Dichroism (NEAR-UV CD) and Molecular Fluorescence;they indicates that the protein has a three-dimensional folding associated with the aromatic amino acids in its structure, where tryptophan (Trp) is located inside the folded structure of the protein while tyrosine (Tyr) is exposed to the solvent.
Palavras-chave

Texto completo: Disponível Coleções: Bases de dados de organismos internacionais Base de dados: Web of Science Idioma: Inglês Revista: Pure and Applied Chemistry Ano de publicação: 2022 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponível Coleções: Bases de dados de organismos internacionais Base de dados: Web of Science Idioma: Inglês Revista: Pure and Applied Chemistry Ano de publicação: 2022 Tipo de documento: Artigo