Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Negl Trop Dis ; 16(11): e0010908, 2022 11.
Article in English | MEDLINE | ID: mdl-36331971

ABSTRACT

Buruli ulcer is one of the 20 neglected tropical diseases in the world. This necrotizing hypodermitis is a chronic debilitating disease caused by an environmental Mycobacterium ulcerans. At least 33 countries with tropical, subtropical and temperate climates have reported Buruli ulcer in African countries, South America and Western Pacific regions. Majority of cases are spread across West and Central Africa. The mode of transmission is unclear, hindering the implementation of adequate prevention for the population. Currently, early diagnosis and treatment are crucial to minimizing morbidity, costs and preventing long-term disability. Biological confirmation of clinical diagnosis of Buruli ulcer is essential before starting chemotherapy. Indeed, differential diagnosis are numerous and Buruli ulcer has varying clinical presentations. Up to now, the gold standard biological confirmation is the quantitative PCR, targeting the insertion sequence IS2404 of M. ulcerans performed on cutaneous samples. Due to the low PCR confirmation rate in endemic African countries (under 30% in 2018) for numerous identified reasons within this article, 11 laboratories decided to combine their efforts to create the network "BU-LABNET" in 2019. The first step of the network was to harmonize the procedures and ship specific reagents to each laboratory. With this system in place, implementation of these procedures for testing and follow-up was easy and the laboratories were able to carry out their first quality control with a very high success rate. It is now time to integrate other neglected tropical diseases to this platform, such as yaws or leprosy.


Subject(s)
Buruli Ulcer , Mycobacterium ulcerans , Humans , Buruli Ulcer/diagnosis , Buruli Ulcer/epidemiology , Buruli Ulcer/microbiology , Laboratories , Mycobacterium ulcerans/genetics , Neglected Diseases/diagnosis , Real-Time Polymerase Chain Reaction , World Health Organization
2.
BMC Infect Dis ; 21(1): 1186, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823479

ABSTRACT

BACKGROUND: Nucleic acid-based amplification tests (NAAT), above all (q)PCR, have been applied for the detection of Mycobacterium leprae in leprosy cases and household contacts with subclinical infection. However, their application in the field poses a range of technical challenges. Loop-mediated isothermal amplification (LAMP), as a promising point-of-care NAAT does not require sophisticated laboratory equipment, is easy to perform, and is applicable for decentralized diagnosis at the primary health care level. Among a range of gene targets, the M. leprae specific repetitive element RLEP is regarded as highly sensitive and specific for diagnostic applications.  METHODS: Our group developed and validated a dry-reagent-based (DRB) RLEP LAMP, provided product specifications for customization of a ready-to-use kit (intended for commercial production) and compared it against the in-house prototype. The assays were optimized for application on a Genie® III portable fluorometer. For technical validation, 40 "must not detect RLEP" samples derived from RLEP qPCR negative exposed and non-exposed individuals, as well as from patients with other conditions and a set of closely related mycobacterial cultures, were tested together with 25 "must detect RLEP" samples derived from qPCR confirmed leprosy patients. For clinical validation, 150 RLEP qPCR tested samples were analyzed, consisting of the following categories: high-positive samples of multibacillary (MB) leprosy patients (> 10.000 bacilli/extract), medium-positive samples of MB leprosy patients (1.001-10.000 bacilli/extract), low-positive samples of MB leprosy patients (1-1.000 bacilli/extract), endemic controls and healthy non-exposed controls; each n = 30.  RESULTS: Technical validation: both LAMP formats had a limit of detection of 1.000 RLEP copies, i.e. 43-27 bacilli, a sensitivity of 92% (in-house protocol)/100% (ready-to-use protocol) and a specificity of 100%. Reagents were stable for at least 1 year at 22 °C. Clinical validation: Both formats showed a negativity rate of 100% and a positivity rate of 100% for high-positive samples and 93-100% for medium positive samples, together with a positive predictive value of 100% and semi-quantitative results. The positivity rate for low-positive samples was 77% (in-house protocol)/43% (ready-to-use protocol) and differed significantly between both formats.  CONCLUSIONS: The ready-to-use RLEP DRB LAMP assay constitutes an ASSURED test ready for field-based evaluation trials aiming for routine diagnosis of leprosy at the primary health care level.


Subject(s)
Laboratories , Leprosy , DNA, Bacterial , Humans , Leprosy/diagnosis , Molecular Diagnostic Techniques , Mycobacterium leprae/genetics , Nucleic Acid Amplification Techniques , Point-of-Care Testing , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
3.
BMC Infect Dis ; 19(1): 753, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31462296

ABSTRACT

BACKGROUND: Leprosy continues to be a health problem in endemic areas. More than 200,000 new cases of leprosy per year suggest that transmission of the disease is still ongoing, presumably as airborne infection through nasal droplets. Late diagnosis supports continued transmission and increases the individual risk for functional disabilities. Laboratory tools are considered beneficial to facilitate early detection and clinical assessment of cases. The aim of this study was to validate molecular tools allowing detection, quantification and assessment of viability of M. leprae from nasal swab samples which are easy to obtain without the need of any invasive procedures. METHODS: Validation of two real-time PCRs detecting M. leprae DNA (RLEP qPCR) and RNA (16S rRNA RT qPCR) was conducted on "must not detect"/"must detect" samples and 160 pre-treatment nasal swab samples from 20 clinically diagnosed multibacillary (MB) leprosy patients from Togo. RESULTS: Both assays were 100% M. leprae specific and showed analytical sensitivities of three templates each. Out of 20 clinically diagnosed MB leprosy patients, 15 (75.0%) had a positive RLEP qPCR result from nasal swab samples. The 16S rRNA RT qPCR detected viable bacilli in nasal swab samples of ten out of these 15 RLEP positive patients (66.7%). CONCLUSION: The combined RLEP/16S rRNA (RT) qPCR assay provides a sensitive and specific tool to determine the bacterial load and viability of M. leprae from nasal swab samples and is applicable for early diagnosis, monitoring treatment response and investigating the role of nasal carriage of M. leprae in human-to-human transmission through aerosol infection.


Subject(s)
Leprosy/microbiology , Mycobacterium leprae/genetics , Nasal Cavity/microbiology , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA, Bacterial/genetics , Humans , Leprosy/diagnosis , Leprosy, Multibacillary/diagnosis , Leprosy, Multibacillary/microbiology , Middle Aged , Mycobacterium leprae/isolation & purification , Mycobacterium leprae/pathogenicity , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Sensitivity and Specificity , Togo , Young Adult
4.
Infection ; 47(6): 1065-1069, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31456174

ABSTRACT

CASE PRESENTATION: We report on a German leprosy patient originating from Pakistan who had a relapse more than 5 years after completion of multi-drug therapy (MDT) of his first episode of multibacillary (MB) leprosy. State-of-the-art laboratory techniques (histopathology, PGL-I serology, microscopy and DNA/RNA qPCR) were applied for laboratory confirmation and monitoring of treatment outcome. Serology indicated the relapse long before the presence of unambiguous clinical signs. At the time of diagnosis of the relapse the patient had a remarkably high bacterial load suggesting increased risk for a second relapse. Furthermore, unexpectedly prolonged excretion of viable bacilli through the upper respiratory tract for more than 3 months after onset of MDT was shown. Therefore, MDT was administered for 2 years. DISCUSSION AND CONCLUSIONS: The clinical course of the patient, as well as the prolonged excretion of viable bacilli, underlines the usefulness of laboratory assessment. Laboratory tools including up-to-date molecular assays facilitate rapid diagnosis, timely MDT, identification of individuals excreting viable bacilli and patients at risk for relapses, monitoring of treatment outcome and respective adaptation of treatment where appropriate.


Subject(s)
Leprosy/diagnosis , Leprosy/drug therapy , Secondary Prevention , Adult , Drug Therapy, Combination , Germany , Humans , Leprosy/microbiology , Male , Pakistan/ethnology , Recurrence , Treatment Outcome
5.
Nat Commun ; 9(1): 352, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367657

ABSTRACT

Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients' skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mycobacterium leprae/drug effects , Phylogeny , Codon, Nonsense , DNA, Bacterial/chemistry , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Mycobacterium leprae/genetics , Mycobacterium leprae/isolation & purification
6.
s.l; s.n; 2018. 11 p. mapa, tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095218

ABSTRACT

Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients' skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance.


Subject(s)
Humans , Phylogeny , DNA, Bacterial/chemistry , Microbial Sensitivity Tests , Genome, Bacterial , Codon, Nonsense , Drug Resistance, Bacterial/genetics , Anti-Infective Agents/pharmacology , Mycobacterium leprae/isolation & purification , Mycobacterium leprae/drug effects , Mycobacterium leprae/genetics
7.
PLoS Negl Trop Dis ; 9(1): e3457, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569674

ABSTRACT

BACKGROUND: The only available vaccine that could be potentially beneficial against mycobacterial diseases contains live attenuated bovine tuberculosis bacillus (Mycobacterium bovis) also called Bacillus Calmette-Guérin (BCG). Even though the BCG vaccine is still widely used, results on its effectiveness in preventing mycobacterial diseases are partially contradictory, especially regarding Buruli Ulcer Disease (BUD). The aim of this case-control study is to evaluate the possible protective effect of BCG vaccination on BUD. METHODOLOGY: The present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors. PRINCIPAL FINDINGS: After stratification by the three countries, two sexes and four age groups, no significant correlation was found between the presence of BCG scar and BUD status of individuals. Multivariate analysis has shown that the independent variables country (p = 0.31), sex (p = 0.24), age (p = 0.96), and presence of a BCG scar (p = 0.07) did not significantly influence the development of BUD category I or category II/III. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or time to healing of lesions. CONCLUSIONS: In our study, we did not observe significant evidence of a protective effect of routine BCG vaccination on the risk of developing either BUD or severe forms of BUD. Since accurate data on BCG strains used in these three countries were not available, no final conclusion can be drawn on the effectiveness of BCG strain in protecting against BUD. As has been suggested for tuberculosis and leprosy, well-designed prospective studies on different existing BCG vaccine strains are needed also for BUD.


Subject(s)
BCG Vaccine/immunology , Buruli Ulcer/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Democratic Republic of the Congo/epidemiology , Female , Ghana/epidemiology , Humans , Infant , Male , Middle Aged , Risk Factors , Togo/epidemiology , Young Adult
8.
PLoS Negl Trop Dis ; 5(7): e1228, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21811641

ABSTRACT

BACKGROUND: Since the early 1990s more than 1,800 patients with lesions suspicious for Buruli ulcer disease (BUD) have been reported from Togo. However, less than five percent of these were laboratory confirmed. Since 2007, the Togolese National Buruli Ulcer Control Program has been supported by the German Leprosy and Tuberculosis Relief Association (DAHW). Collaboration with the Department for Infectious Diseases and Tropical Medicine (DITM), University Hospital, Munich, Germany, allowed IS2404 PCR analysis of diagnostic samples from patients with suspected BUD during a study period of three years. METHODOLOGY/PRINCIPAL FINDINGS: The DAHW integrated active BUD case finding in the existing network of TB/Leprosy Controllers and organized regular training and outreach activities to identify BUD cases at community level. Clinically suspected cases were referred to health facilities for diagnosis and treatment. Microscopy was carried out locally, external quality assurance (EQA) at DITM. Diagnostic samples from 202 patients with suspected BUD were shipped to DITM, 109 BUD patients (54%) were confirmed by PCR, 43 (29.9%) by microscopy. All patients originated from Maritime Region. EQA for microscopy resulted in 62% concordant results. CONCLUSIONS/SIGNIFICANCE: This study presents a retrospective analysis of the first cohort of clinically suspected BUD cases from Togo subjected to systematic laboratory analysis over a period of three years and confirms the prevalence of BUD in Maritime Region. Intensified training in the field of case finding and sample collection increased the PCR case confirmation rate from initially less than 50% to 70%. With a PCR case confirmation rate of 54% for the entire study period the WHO standards (case confirmation rate ≥50%) have been met. EQA for microscopy suggests the need for intensified supervision and training. In January 2011 the National Hygiene Institute, Lomé, has assumed the role of a National Reference Laboratory for PCR confirmation and microscopy.


Subject(s)
Buruli Ulcer/diagnosis , Mycobacterium ulcerans/isolation & purification , Adolescent , Aged , Buruli Ulcer/epidemiology , Buruli Ulcer/microbiology , Chi-Square Distribution , Child , Child, Preschool , Female , Humans , Infant , Middle Aged , Polymerase Chain Reaction , Prevalence , Retrospective Studies , Togo/epidemiology , Tropical Medicine
9.
Lancet ; 375(9715): 664-72, 2010 Feb 20.
Article in English | MEDLINE | ID: mdl-20137805

ABSTRACT

BACKGROUND: Surgical debridement was the standard treatment for Mycobacterium ulcerans infection (Buruli ulcer disease) until WHO issued provisional guidelines in 2004 recommending treatment with antimicrobial drugs (streptomycin and rifampicin) in addition to surgery. These recommendations were based on observational studies and a small pilot study with microbiological endpoints. We investigated the efficacy of two regimens of antimicrobial treatment in early-stage M ulcerans infection. METHODS: In this parallel, open-label, randomised trial undertaken in two sites in Ghana, patients were eligible for enrolment if they were aged 5 years or older and had early (duration <6 months), limited (cross-sectional diameter <10 cm), M ulcerans infection confirmed by dry-reagent-based PCR. Eligible patients were randomly assigned to receive intramuscular streptomycin (15 mg/kg once daily) and oral rifampicin (10 mg/kg once daily) for 8 weeks (8-week streptomycin group; n=76) or streptomycin and rifampicin for 4 weeks followed by rifampicin and clarithromycin (7.5 mg/kg once daily), both orally, for 4 weeks (4-week streptomycin plus 4-week clarithromycin group; n=75). Randomisation was done by computer-generated minimisation for study site and type of lesion (ulceration or no ulceration). The randomly assigned allocation was sent from a central site by cell-phone text message to the study coordinator. The primary endpoint was lesion healing at 1 year after the start of treatment without lesion recurrence or extensive surgical debridement. Analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT00321178. FINDINGS: Four patients were lost to follow-up (8-week streptomycin, one; 4-week streptomycin plus 4-week clarithromycin, three). Since these four participants had healed lesions at their last assessment, they were included in the analysis for the primary endpoint. 73 (96%) participants in the 8-week streptomycin group and 68 (91%) in the 4-week streptomycin plus 4-week clarithromycin group had healed lesions at 1 year (odds ratio 2.49, 95% CI 0.66 to infinity; p=0.16, one-sided Fisher's exact test). No participants had lesion recurrence at 1 year. Three participants had vestibulotoxic events (8-week streptomycin, one; 4-week streptomycin plus 4-week clarithromycin, two). One participant developed an injection abscess and two participants developed an abscess close to the initial lesion, which was incised and drained (all three participants were in the 4-week streptomycin plus 4-week clarithromycin group). INTERPRETATION: Antimycobacterial treatment for M ulcerans infection is effective in early, limited disease. 4 weeks of streptomycin and rifampicin followed by 4 weeks of rifampicin and clarithromycin has similar efficacy to 8 weeks of streptomycin and rifampicin; however, the number of injections of streptomycin can be reduced by switching to oral clarithromycin after 4 weeks. FUNDING: European Union (EU FP6 2003-INCO-Dev2-015476) and Buruli Ulcer Groningen Foundation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Buruli Ulcer/drug therapy , Clarithromycin/therapeutic use , Leprostatic Agents/therapeutic use , Mycobacterium ulcerans/drug effects , Streptomycin/therapeutic use , Administration, Oral , Adolescent , Adult , Buruli Ulcer/diagnosis , Child , Drug Administration Schedule , Drug Therapy, Combination , Endpoint Determination , Female , Follow-Up Studies , Ghana , Humans , Injections, Intramuscular , Male , Mycobacterium ulcerans/isolation & purification , Rifampin/therapeutic use , Statistics, Nonparametric , Time Factors , Treatment Outcome , Young Adult
10.
Med Microbiol Immunol ; 198(2): 69-77, 2009 May.
Article in English | MEDLINE | ID: mdl-19198877

ABSTRACT

Buruli ulcer disease (BUD), caused by Mycobacterium ulcerans, is a neglected bacterial infection of the poor in remote rural areas, mostly affecting children. BUD is a mutilating disease leading to severe disability; it is the third most common mycobacterial infection in immunocompetent people after tuberculosis and leprosy. It is most endemic in West Africa, but cases have been reported from more than 30 countries. Treatment with antibiotics is possible, long-lasting and requires injections; there are cases of treatment failures, and the disease is prone to resistance. A vaccine against M. ulcerans would protect persons at risk in highly endemic areas, and could be used as a therapeutic vaccine to shorten the duration of treatment and prevent relapses. There is considerable evidence supporting the notion that generation of a vaccine is feasible. This article reviews the present state of the art with special emphasis on the immunology of the infection and the prospects for development of a vaccine.


Subject(s)
Bacterial Vaccines/immunology , Buruli Ulcer/prevention & control , Mycobacterium ulcerans/immunology , Africa, Western/epidemiology , Buruli Ulcer/epidemiology , Buruli Ulcer/immunology , Humans , Incidence , Prevalence
11.
Med Microbiol Immunol ; 193(4): 189-93, 2004 Nov.
Article in English | MEDLINE | ID: mdl-12884037

ABSTRACT

Real-time PCR technology has improved molecular diagnostics of many pathogens, but no such test is available for Mycobacterium leprae. In this report we describe the establishment and the pre-clinical evaluation of such an assay. The test achieved a theoretical analytical sensitivity limit of 194 M. leprae cells per skin biopsy specimen and facilitated quantification of mycobacteria in tissue over a range of 54-54,000,000 cells per sample. In punch skin biopsies from 39 untreated Ugandan patients with newly diagnosed leprosy, the clinical diagnosis could be confirmed in 88.9% of multibacillary and 33.3% of paucibacillary (microscopically negative) patients. Real-time detection thus did not increase the clinical sensitivity of PCR as compared to conventional protocols, in spite of its evidently high analytical sensitivity. On the other hand, as still no culture system exists for M. leprae, the assay appears to be a robust tool for detection of the bacterium in selected clinical situations, as well as for quantitation in experimental settings.


Subject(s)
Leprosy/diagnosis , Mycobacterium leprae/isolation & purification , Polymerase Chain Reaction/methods , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Biopsy , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Humans , Leprosy/microbiology , Molecular Sequence Data , Mycobacterium leprae/genetics , Sensitivity and Specificity , Sequence Alignment , Sequence Analysis, DNA , Skin/microbiology , Uganda
12.
s.l; s.n; 2004. 5 p. tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1241697

ABSTRACT

Real-time PCR technology has improved molecular diagnostics of many pathogens, but no such test is available for Mycobacterium leprae. In this report we describe the establishment and the pre-clinical evaluation of such an assay. The test achieved a theoretical analytical sensitivity limit of 194 M. leprae cells per skin biopsy specimen and facilitated quantification of mycobacteria in tissue over a range of 54-54,000,000 cells per sample. In punch skin biopsies from 39 untreated Ugandan patients with newly diagnosed leprosy, the clinical diagnosis could be confirmed in 88.9% of multibacillary and 33.3% of paucibacillary (microscopically negative) patients. Real-time detection thus did not increase the clinical sensitivity of PCR as compared to conventional protocols, in spite of its evidently high analytical sensitivity. On the other hand, as still no culture system exists for M. leprae, the assay appears to be a robust tool for detection of the bacterium in selected clinical situations, as well as for quantitation in experimental settings.


Subject(s)
Humans , Sequence Alignment , Antigens, Bacterial , Sequence Analysis, DNA , Biopsy , DNA, Bacterial , Molecular Sequence Data , Leprosy , Mycobacterium leprae , Skin , Bacterial Proteins , Polymerase Chain Reaction , Sensitivity and Specificity , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL