Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 10(1): 1284, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992776

ABSTRACT

Host genetic susceptibility to leprosy has been intensively investigated over the last decades; however, there are no studies on the role of genetic variants in disease recurrence. A previous initiative identified three recurrent cases of leprosy for which none of the M. leprae strains, as obtained in the first and the second diagnosis, had any known genomic variants associated to resistance to Multidrug therapy; in addition, whole genome sequencing indicated that the same M. leprae was causing two out of the three recurrences. Thus, these individuals were suspected of being particularly susceptible to M. leprae infection, either as relapse or reinfection. To verify this hypothesis, 19 genetic markers distributed across 11 loci (14 genes) classically associated with leprosy were genotyped in the recurrent and in three matching non-recurrent leprosy cases. An enrichment of risk alleles was observed in the recurrent cases, suggesting the existence of a particularly high susceptibility genetic profile among leprosy patients predisposing to disease recurrence.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease , Leprosy/genetics , Mycobacterium leprae , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Female , Humans , Male , Recurrence
2.
PLoS Negl Trop Dis ; 11(6): e0005598, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617800

ABSTRACT

BACKGROUND: Since leprosy is both treated and controlled by multidrug therapy (MDT) it is important to monitor recurrent cases for drug resistance and to distinguish between relapse and reinfection as a means of assessing therapeutic efficacy. All three objectives can be reached with single nucleotide resolution using next generation sequencing and bioinformatics analysis of Mycobacterium leprae DNA present in human skin. METHODOLOGY: DNA was isolated by means of optimized extraction and enrichment methods from samples from three recurrent cases in leprosy patients participating in an open-label, randomized, controlled clinical trial of uniform MDT in Brazil (U-MDT/CT-BR). Genome-wide sequencing of M. leprae was performed and the resultant sequence assemblies analyzed in silico. PRINCIPAL FINDINGS: In all three cases, no mutations responsible for resistance to rifampicin, dapsone and ofloxacin were found, thus eliminating drug resistance as a possible cause of disease recurrence. However, sequence differences were detected between the strains from the first and second disease episodes in all three patients. In one case, clear evidence was obtained for reinfection with an unrelated strain whereas in the other two cases, relapse appeared more probable. CONCLUSIONS/SIGNIFICANCE: This is the first report of using M. leprae whole genome sequencing to reveal that treated and cured leprosy patients who remain in endemic areas can be reinfected by another strain. Next generation sequencing can be applied reliably to M. leprae DNA extracted from biopsies to discriminate between cases of relapse and reinfection, thereby providing a powerful tool for evaluating different outcomes of therapeutic regimens and for following disease transmission.


Subject(s)
Genome, Bacterial , Leprosy/diagnosis , Molecular Typing/methods , Mycobacterium leprae/classification , Mycobacterium leprae/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Brazil , Computational Biology/methods , DNA, Bacterial/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mycobacterium leprae/isolation & purification , Randomized Controlled Trials as Topic , Recurrence , Young Adult
3.
J Clin Microbiol ; 55(5): 1516-1525, 2017 05.
Article in English | MEDLINE | ID: mdl-28275081

ABSTRACT

Leprosy is an important cause of disability in the developing world. Early diagnosis is essential to allow for cure and to interrupt transmission of this infection. MicroRNAs (miRNAs) are important factors for host-pathogen interaction and they have been identified as biomarkers for various infectious diseases. The expression profile of 377 microRNAs were analyzed by TaqMan low-density array (TLDA) in skin lesions of tuberculoid and lepromatous leprosy patients as well as skin specimens from healthy controls. In a second step, 16 microRNAs were selected for validation experiments with reverse transcription-quantitative PCR (qRT-PCR) in skin samples from new individuals. Principal-component analysis followed by logistic regression model and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic potential of selected miRNAs. Four patterns of differential expression were identified in the TLDA experiment, suggesting a diagnostic potential of miRNAs in leprosy. After validation experiments, a combination of four miRNAs (miR-101, miR-196b, miR-27b, and miR-29c) was revealed as able to discriminate between healthy control and leprosy patients with 80% sensitivity and 91% specificity. This set of miRNAs was also able to discriminate between lepromatous and tuberculoid patients with a sensitivity of 83% and 80% specificity. In this work, it was possible to identify a set of miRNAs with good diagnostic potential for leprosy.


Subject(s)
Genetic Markers/genetics , Leprosy/diagnosis , MicroRNAs/genetics , Mycobacterium leprae/genetics , Adult , Early Diagnosis , Humans , Leprosy/immunology , Leprosy/microbiology , Middle Aged , Mycobacterium leprae/immunology , ROC Curve , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL