Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cytokine ; 165: 156184, 2023 05.
Article in English | MEDLINE | ID: mdl-36996537

ABSTRACT

Leprosy is a chronic and infectious disease that primarily affects the skin and peripheral nervous system, presenting a wide spectrum of clinical forms with different degrees of severity. The distinct host immune response patters developed in the response to the bacillus Mycobacterium leprae, the leprosy etiologic agent, are associated with the spectral clinical forms and outcome of the disease. In this context, B cells are allegedly involved in the disease immunopathogenesis, usually as antibody-producing cells, but also as potential effector or regulatory elements. In order to determine the regulatory B cells role in experimental leprosy, this study evaluated the outcome of M. leprae infection in B cell deficient mice (BKO) and WT C57Bl/6 control, by means of microbiological/bacilloscopic, immunohistochemical and molecular analysis, performed 8 months after M. leprae inoculation. The results demonstrated that infected BKO showed a higher bacilli number when compared with WT animals, demonstrating the importance of these cells in experimental leprosy. The molecular analysis demonstrates that the expression of IL-4, IL-10 and TGF-ß was significantly higher in the BKO footpads when compared to WT group. Conversely, there was no difference in IFN-γ, TNF-α and IL-17 expression levels in BKO and WT groups. IL-17 expression was significantly higher in the lymph nodes of WT group. The immunohistochemical analysis revealed that M1 (CD80+) cells counts were significantly lower in the BKO group, while no significant difference was observed to M2 (CD206+) counts, resulting a skewed M1/M2 balance. These results demonstrated that the absence of B lymphocytes contribute to the persistence and multiplication of M. leprae, probably due to the increased expression of the IL-4, IL-10 and TGF-ß cytokines, as well as a decrease in the number of M1 macrophages in the inflammatory site.


Subject(s)
Leprosy , Mycobacterium leprae , Mice , Animals , Interleukin-10 , Interleukin-17 , Interleukin-4 , Immunity , B-Lymphocytes , Transforming Growth Factor beta
3.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Article in English | MEDLINE | ID: mdl-34395315

ABSTRACT

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Subject(s)
Leprosy , Mycobacterium leprae , Adenosine Triphosphate , Cholesterol , Humans , Lipids
5.
PLoS Negl Trop Dis ; 14(5): e0008325, 2020 05.
Article in English | MEDLINE | ID: mdl-32453754

ABSTRACT

Leprosy urgently needs a precise and early diagnostic tool. The sensitivity of the direct (bacilli staining, Mycobacterium leprae DNA) and indirect (antibody levels, T cell assays) diagnostics methods vary based on the clinical form. Recently, PCR-based M. leprae DNA detection has been shown to differentially diagnose leprosy from other dermatological conditions. However, accuracy can still be improved, especially for use with less invasive clinical samples. We tested different commercial DNA extraction kits: DNeasy Blood & Tissue, QIAamp DNA Microbiome, Maxwell 16 DNA Purification, PowerSoil DNA Isolation; as well as in-house phenol-chloroform and Trizol/FastPrep methods. Extraction was performed on M. leprae-infected mouse footpads and different clinical samples of leprosy patients (skin biopsies and scrapings, lesion, oral and nasal swabs, body hair, blood on FTA cards, peripheral whole blood). We observed that the Microbiome kit was able to enrich for mycobacterial DNA, most likely due the enzymatic digestion cocktail along with mechanical disruption involved in this method. Consequently, we had a significant increase in sensitivity in skin biopsies from paucibacillary leprosy patients using a duplex qPCR targeting 16S rRNA (M. leprae) and 18S rRNA (mammal) in the StepOnePlus system. Our data showed that the presence of M. leprae DNA was best detected in skin biopsies and skin scrapings, independent of the extraction method or the clinical form. For multibacillary patients, detection of M. leprae DNA in nasal swabs indicates the possibility of having a much less invasive sample that can be used for the purposes of DNA sequencing for relapse analysis and drug resistance monitoring. Overall, DNA extracted with the Microbiome kit presented the best bacilli detection rate for paucibacillary cases, indicating that investments in extraction methods with mechanical and DNA digestion should be made.


Subject(s)
DNA, Bacterial/isolation & purification , Mycobacterium leprae/isolation & purification , Polymerase Chain Reaction/methods , Animals , DNA, Bacterial/genetics , Humans , Mice , Mycobacterium leprae/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity
6.
PLoS Negl Trop Dis ; 14(3): e0008138, 2020 03.
Article in English | MEDLINE | ID: mdl-32226013

ABSTRACT

The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.


Subject(s)
Leprosy/pathology , Lipoproteins, HDL/blood , Adolescent , Adult , Aged , Chromatography, High Pressure Liquid , Female , Humans , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Male , Mass Spectrometry , Middle Aged , Plasma/chemistry , Young Adult
7.
Sci Rep ; 10(1): 1284, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992776

ABSTRACT

Host genetic susceptibility to leprosy has been intensively investigated over the last decades; however, there are no studies on the role of genetic variants in disease recurrence. A previous initiative identified three recurrent cases of leprosy for which none of the M. leprae strains, as obtained in the first and the second diagnosis, had any known genomic variants associated to resistance to Multidrug therapy; in addition, whole genome sequencing indicated that the same M. leprae was causing two out of the three recurrences. Thus, these individuals were suspected of being particularly susceptible to M. leprae infection, either as relapse or reinfection. To verify this hypothesis, 19 genetic markers distributed across 11 loci (14 genes) classically associated with leprosy were genotyped in the recurrent and in three matching non-recurrent leprosy cases. An enrichment of risk alleles was observed in the recurrent cases, suggesting the existence of a particularly high susceptibility genetic profile among leprosy patients predisposing to disease recurrence.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease , Leprosy/genetics , Mycobacterium leprae , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Female , Humans , Male , Recurrence
8.
Clin Infect Dis ; 70(10): 2054-2061, 2020 05 06.
Article in English | MEDLINE | ID: mdl-31260522

ABSTRACT

BACKGROUND: Leprosy has been treated with multidrug therapy, which has been distributed for free across the globe and regarded as highly efficient. However, the impossibility of growing Mycobacterium leprae in axenic media has historically impaired assessments of M. leprae resistance, a parameter only recently detectable through molecular methods. METHODS: A systematic, population-based search for M. leprae resistance in suspected leprosy relapse cases and contacts was performed in Prata Village, an isolated, hyperendemic, former leprosy colony located in the Brazilian Amazon. Results led to an extended active search involving the entire Prata population. Confirmed leprosy cases were investigated for bacterial resistance using a combination of in vivo testing and direct sequencing of resistance genes folP1, rpoB, and gyrA. A molecular epidemiology analysis was performed using data from 17 variable number tandem repeats (VNTR). RESULTS: Mycobacterium leprae was obtained from biopsies of 37 leprosy cases (18 relapses and 19 new cases): 16 (43.24%) displayed drug-resistance variants. Multidrug resistance to rifampicin and dapsone was observed in 8 relapses and 4 new cases. Single resistance to rifampicin was detected in 1 new case. Resistance to dapsone was present in 2 relapses and 1 new case. Combined molecular resistance and VNTR data revealed evidence of intra-familial primary transmission of resistant M. leprae. CONCLUSIONS: A comprehensive, population-based systematic approach to investigate M. leprae resistance in a unique population revealed an alarming scenario of the emergence and transmission of resistant strains. These findings may be used for the development of new strategies for surveillance of drug resistance in other populations.


Subject(s)
Leprosy , Pharmaceutical Preparations , Brazil/epidemiology , Drug Resistance, Bacterial , Drug Therapy, Combination , Humans , Leprostatic Agents/pharmacology , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Leprosy/epidemiology , Microbial Sensitivity Tests , Mycobacterium leprae/genetics
9.
s.l; s.n; 2020. 15 p. ilus, graf, tab.
Non-conventional in English | CONASS, Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1146399

ABSTRACT

Leprosy is difficult to diagnose since it is caused by a bacterium that does not grow in vitro. Bacilli direct detection or the presence of specific antibodies can vary greatly depending on the clinical form. M. leprae direct DNA detection can aid clinical diagnosis, although invasive skin biopsies are still necessary to detect the pathogen or histological features consistent with leprosy. Here we show that a kit combining mechanical and chemical lysis efficiently removes host DNA and enriches for M. leprae DNA, allowing better detection of paucibacillary cases. We believe our findings can contribute to improving disease diagnosis, as well as early detection and that could help monitoring strategies(AU).


Subject(s)
Humans , Animals , Mice , DNA, Bacterial/isolation & purification , Polymerase Chain Reaction/methods , Mycobacterium leprae/isolation & purification , DNA, Bacterial/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Mycobacterium leprae/genetics
10.
Front Med (Lausanne) ; 5: 263, 2018.
Article in English | MEDLINE | ID: mdl-30320113

ABSTRACT

The AKR1B10 (aldo-keto reductase family 1 member B10) gene has important functions in carcinogen-induced neoplasia. AKR1B10 is also expressed in type 2 reaction leprosy patients (R2). We measured the expression of AKR1B10 in the skin lesions of patients with leprosy by immunohistochemistry from biopsies that encompassed the spectrum of types of leprosy, based on the Ridley and Jopling classification [10 samples each of tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), and borderline lepromatous (BL) lesions; four samples of lepromatous lesions (LL)], reactional leprosy [14 samples of type 1 Reaction (R1) and 10 samples of type 2 Reaction (R2)], and biopsies from 9 healthy control (HC) subjects. In addition, 46 lepromatous lesions (BL and LL), 45 lepromatous lesions in regression, and 115 R2 lesions were included. Eight of 10 R2 samples (80%), 3 of 46 active BL and LL samples (6%), 23 of 45 BL and LL samples in regression (51%), and 107 of 115 R2 samples (93%) were positive for AKR1B10, differing significantly between all groups (p < 0.05). AKR1B10 expression was highest in the cytoplasm of macrophages. Thus, AKR1B10 is overexpressed on the lepromatous side (BL and LL) in samples that are in regression, especially type 2 reaction-associated lesions, rendering it a potential marker of type 2 reactional episodes of leprosy and a target of drugs against reactional episodes.

11.
Nat Commun ; 9(1): 352, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367657

ABSTRACT

Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients' skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mycobacterium leprae/drug effects , Phylogeny , Codon, Nonsense , DNA, Bacterial/chemistry , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Mycobacterium leprae/genetics , Mycobacterium leprae/isolation & purification
12.
s.l; s.n; 2018. 9 p. ilus, graf.
Non-conventional in English | HANSEN, Sec. Est. Saúde SP, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1023139

ABSTRACT

The AKR1B10 (aldo-keto reductase family 1 member B10) gene has important functions in carcinogen-induced neoplasia. AKR1B10 is also expressed in type 2 reaction leprosy patients (R2). We measured the expression of AKR1B10 in the skin lesions of patients with leprosy by immunohistochemistry from biopsies that encompassed the spectrum of types of leprosy, based on the Ridley and Jopling classification [10 samples each of tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), and borderline lepromatous (BL) lesions; four samples of lepromatous lesions (LL)], reactional leprosy [14 samples of type 1 Reaction (R1) and 10 samples of type 2 Reaction (R2)], and biopsies from 9 healthy control (HC) subjects. In addition, 46 lepromatous lesions (BL and LL), 45 lepromatous lesions in regression, and 115 R2 lesions were included. Eight of 10 R2 samples (80%), 3 of 46 active BL and LL samples (6%), 23 of 45 BL and LL samples in regression (51%), and 107 of 115 R2 samples (93%) were positive for AKR1B10, differing significantly between all groups (p < 0.05). AKR1B10 expression was highest in the cytoplasm of macrophages. Thus, AKR1B10 is overexpressed on the lepromatous side (BL and LL) in samples that are in regression, especially type 2 reaction-associated lesions, rendering it a potential marker of type 2 reactional episodes of leprosy and a target of drugs against reactional episodes.


Subject(s)
Biomarkers , Aldo-Keto Reductase Family 1 member B10 , Leprosy/therapy , Leprosy/complications
13.
Front Immunol ; 8: 1035, 2017.
Article in English | MEDLINE | ID: mdl-28970833

ABSTRACT

Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is a major public health problem in poor and developing countries of the Americas, Africa, and Asia. MicroRNAs (miRNAs), which are small non-coding RNAs (18-24 nucleotides), play an important role in regulating cell and tissue homeostasis through translational downregulation of messenger RNAs (mRNAs). Deregulation of miRNA expression is important for the pathogenesis of various neoplastic and non-neoplastic diseases and has been the focus of many publications; however, studies on the expression of miRNAs in leprosy are rare. Herein, an extensive evaluation of differentially expressed miRNAs was performed on leprosy skin lesions using microarrays. Leprosy patients, classified according to Ridley and Jopling's classification or reactional states (R1 and R2), and healthy controls (HCs) were included. Punch biopsies were collected from the borders of leprosy lesions (10 tuberculoid, 10 borderline tuberculoid, 10 borderline borderline, 10 borderline lepromatous, 4 lepromatous, 14 R1, and 9 R2) and from 9 HCs. miRNA expression profiles were obtained using the Agilent Microarray platform with miRBase, which consists of 1,368 Homo sapiens (hsa)-miRNA candidates. TaqMan quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to validate differentially expressed miRNAs. Sixty-four differentially expressed miRNAs, including 50 upregulated and 14 downregulated (fold change ≥2.0, p-value ≤ 0.05) were identified after comparing samples from patients to those of controls. Twenty differentially expressed miRNAs were identified exclusively in the reactional samples (14 type 1 and 6 type 2). Eight miRNAs were validated by RT-PCR, including seven upregulated (hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-146b-5p, hsa-miR-342-3p, hsa-miR-361-3p, hsa-miR-3653, and hsa-miR-484) and one downregulated (hsa-miR-1290). These miRNAs were differentially expressed in leprosy and several other diseases, especially those related to the immune response. Moreover, the integration of analysis of validated mi/mRNAs obtained from the same samples allowed target pairs opposite expression pattern of hsa-miRNA-142-3p and AKR1B10, hsa-miRNA-342-3p and FAM180b, and hsa-miRNA-484 and FASN. This study identified several miRNAs that might play an important role in the molecular pathogenesis of the disease. Moreover, these deregulated miRNAs and their respective signaling pathways might be useful as therapeutic markers, therapeutic targets, which could help in the development of drugs to treat leprosy.

14.
PLoS Negl Trop Dis ; 11(6): e0005598, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617800

ABSTRACT

BACKGROUND: Since leprosy is both treated and controlled by multidrug therapy (MDT) it is important to monitor recurrent cases for drug resistance and to distinguish between relapse and reinfection as a means of assessing therapeutic efficacy. All three objectives can be reached with single nucleotide resolution using next generation sequencing and bioinformatics analysis of Mycobacterium leprae DNA present in human skin. METHODOLOGY: DNA was isolated by means of optimized extraction and enrichment methods from samples from three recurrent cases in leprosy patients participating in an open-label, randomized, controlled clinical trial of uniform MDT in Brazil (U-MDT/CT-BR). Genome-wide sequencing of M. leprae was performed and the resultant sequence assemblies analyzed in silico. PRINCIPAL FINDINGS: In all three cases, no mutations responsible for resistance to rifampicin, dapsone and ofloxacin were found, thus eliminating drug resistance as a possible cause of disease recurrence. However, sequence differences were detected between the strains from the first and second disease episodes in all three patients. In one case, clear evidence was obtained for reinfection with an unrelated strain whereas in the other two cases, relapse appeared more probable. CONCLUSIONS/SIGNIFICANCE: This is the first report of using M. leprae whole genome sequencing to reveal that treated and cured leprosy patients who remain in endemic areas can be reinfected by another strain. Next generation sequencing can be applied reliably to M. leprae DNA extracted from biopsies to discriminate between cases of relapse and reinfection, thereby providing a powerful tool for evaluating different outcomes of therapeutic regimens and for following disease transmission.


Subject(s)
Genome, Bacterial , Leprosy/diagnosis , Molecular Typing/methods , Mycobacterium leprae/classification , Mycobacterium leprae/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Brazil , Computational Biology/methods , DNA, Bacterial/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mycobacterium leprae/isolation & purification , Randomized Controlled Trials as Topic , Recurrence , Young Adult
15.
PLoS Negl Trop Dis ; 11(6): e0005506, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28570560

ABSTRACT

BACKGROUND: Real-Time PCR-High Resolution Melting (qPCR-HRM) analysis has been recently described for rapid drug susceptibility testing (DST) of Mycobacterium leprae. The purpose of the current study was to further evaluate the validity, reliability, and accuracy of this assay for M. leprae DST in clinical specimens. METHODOLOGY/PRINCIPAL FINDINGS: The specificity and sensitivity for determining the presence and susceptibility of M. leprae to dapsone based on the folP1 drug resistance determining region (DRDR), rifampin (rpoB DRDR) and ofloxacin (gyrA DRDR) was evaluated using 211 clinical specimens from leprosy patients, including 156 multibacillary (MB) and 55 paucibacillary (PB) cases. When comparing the results of qPCR-HRM DST and PCR/direct DNA sequencing, 100% concordance was obtained. The effects of in-house phenol/chloroform extraction versus column-based DNA purification protocols, and that of storage and fixation protocols of specimens for qPCR-HRM DST, were also evaluated. qPCR-HRM results for all DRDR gene assays (folP1, rpoB, and gyrA) were obtained from both MB (154/156; 98.7%) and PB (35/55; 63.3%) patients. All PCR negative specimens were from patients with low numbers of bacilli enumerated by an M. leprae-specific qPCR. We observed that frozen and formalin-fixed paraffin embedded (FFPE) tissues or archival Fite's stained slides were suitable for HRM analysis. Among 20 mycobacterial and other skin bacterial species tested, only M. lepromatosis, highly related to M. leprae, generated amplicons in the qPCR-HRM DST assay for folP1 and rpoB DRDR targets. Both DNA purification protocols tested were efficient in recovering DNA suitable for HRM analysis. However, 3% of clinical specimens purified using the phenol/chloroform DNA purification protocol gave false drug resistant data. DNA obtained from freshly frozen (n = 172), formalin-fixed paraffin embedded (FFPE) tissues (n = 36) or archival Fite's stained slides (n = 3) were suitable for qPCR-HRM DST analysis. The HRM-based assay was also able to identify mixed infections of susceptible and resistant M. leprae. However, to avoid false positives we recommend that clinical specimens be tested for the presence of the M. leprae using the qPCR-RLEP assay prior to being tested in the qPCR-HRM DST and that all specimens demonstrating drug resistant profiles in this assay be subjected to DNA sequencing. CONCLUSION/SIGNIFICANCE: Taken together these results further demonstrate the utility of qPCR-HRM DST as an inexpensive screening tool for large-scale drug resistance surveillance in leprosy.


Subject(s)
Drug Resistance, Bacterial/genetics , Leprosy/drug therapy , Microbial Sensitivity Tests/methods , Mycobacterium leprae/drug effects , Real-Time Polymerase Chain Reaction/methods , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Dapsone/pharmacology , Humans , Leprostatic Agents/pharmacology , Leprosy/microbiology , Mycobacterium leprae/isolation & purification , Ofloxacin/pharmacology , Reproducibility of Results , Rifampin/pharmacology , Sensitivity and Specificity , Sequence Analysis, DNA , Skin/microbiology , Skin/pathology
16.
PLoS One ; 12(5): e0177815, 2017.
Article in English | MEDLINE | ID: mdl-28505186

ABSTRACT

Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively), with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively). In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively). The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.


Subject(s)
Complement Activation/immunology , Leprosy/immunology , Leprosy/pathology , Skin Diseases/immunology , Skin Diseases/pathology , T-Lymphocytes/immunology , Adolescent , Adult , Bacterial Load , Biomarkers , Biopsy , Child , Complement C3d/immunology , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Female , Granuloma/immunology , Granuloma/metabolism , Granuloma/pathology , Humans , Immunohistochemistry , Leprosy/microbiology , Lipopolysaccharides , Male , Middle Aged , T-Lymphocytes/metabolism , Young Adult
17.
In. Idrissi, Nawal Bahia El. Complement in neuroinflammation: studies in leprosy and amyotrophic lateral sclerosis. Amsterdam, Ridderprint B. V, 2017. p.43-88, ilus, tab, graf.
Monography in English | Sec. Est. Saúde SP, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1084190
18.
In. Idrissi, Nawal Bahia El. Complement in neuroinflammation: studies in leprosy and amyotrophic lateral sclerosis. Amsterdam, Ridderprint B. V, 2017. p.117-152, ilus, tab, graf.
Monography in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1084192
19.
PLoS One ; 10(12): e0145814, 2015.
Article in English | MEDLINE | ID: mdl-26700881

ABSTRACT

Jorge Lobo's disease (JLD) is a chronic infection that affects the skin and subcutaneous tissues. Its etiologic agent is the fungus Lacazia loboi. Lesions are classified as localized, multifocal, or disseminated, depending on their location. Early diagnosis and the surgical removal of lesions are the best therapeutic options currently available for JLD. The few studies that evaluate the immunological response of JLD patients show a predominance of Th2 response, as well as a high frequency of TGF-ß and IL-10 positive cells in the lesions; however, the overall immunological status of the lesions in terms of their T cell phenotype has yet to be determined. Therefore, the objective of this study was to evaluate the pattern of Th1, Th2, Th17 and regulatory T cell (Treg) markers mRNA in JLD patients by means of real-time PCR. Biopsies of JLD lesions (N = 102) were classified according to their clinical and histopathological features and then analyzed using real-time PCR in order to determine the expression levels of TGF-ß1, FoxP3, CTLA4, IKZF2, IL-10, T-bet, IFN-γ, GATA3, IL-4, IL-5, IL-13, IL-33, RORC, IL-17A, IL-17F, and IL-22 and to compare these levels to those of healthy control skin (N = 12). The results showed an increased expression of FoxP3, CTLA4, TGF-ß1, IL-10, T-bet, IL-17F, and IL-17A in lesions, while GATA3 and IL-4 levels were found to be lower in diseased skin than in the control group. When the clinical forms were compared, TGF-ß1 was found to be highly expressed in patients with a single localized lesion while IL-5 and IL-17A levels were higher in patients with multiple/disseminated lesions. These results demonstrate the occurrence of mixed T helper responses and suggest the dominance of regulatory T cell activity, which could inhibit Th-dependent protective responses to intracellular fungi such as L. loboi. Therefore, Tregs may play a key role in JLD pathogenesis.


Subject(s)
Immunity, Cellular/immunology , Lobomycosis/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , Humans , Immunoenzyme Techniques , Lobomycosis/diagnosis , Lobomycosis/genetics , Male , Middle Aged , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
20.
Front Genet ; 6: 334, 2015.
Article in English | MEDLINE | ID: mdl-26635870

ABSTRACT

Leprosy, an infectious disease caused by Mycobacterium leprae, affects millions of people worldwide. However, little is known regarding its molecular pathophysiological mechanisms. In this study, a comprehensive assessment of human mRNA was performed on leprosy skin lesions by using DNA chip microarrays, which included the entire spectrum of the disease along with its reactional states. Sixty-six samples from leprotic lesions (10TT, 10BT, 10BB, 10BL, 4LL, 14R1, and 10R2) and nine skin biopsies from healthy individuals were used as controls (CC) (ages ranged from 06 to 83 years, 48 were male and 29 female). The evaluation identified 1580 differentially expressed mRNAs [Fold Change (FC) ≥ 2.0, p ≤ 0.05] in diseased lesions vs. healthy controls. Some of these genes were observed in all forms of the disease (CD2, CD27, chit1, FA2H, FAM26F, GZMB, MMP9, SLAMF7, UBD) and others were exclusive to reactional forms (Type "1" reaction: GPNMB, IL1B, MICAL2, FOXQ1; Type "2" reaction: AKR1B10, FAM180B, FOXQ1, NNMT, NR1D1, PTX3, TNFRSF25). In literature, these mRNAs have been associated with numerous pathophysiological processes and signaling pathways and are present in a large number of diseases. The role of these mRNAs maybe studied in the context of developing new diagnostic markers and therapeutic targets for leprosy.

SELECTION OF CITATIONS
SEARCH DETAIL