Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Hum Vaccin Immunother ; 10(5): 1238-43, 2014.
Article in English | MEDLINE | ID: mdl-24607935

ABSTRACT

Despite substantial efforts in recent years toward the development of new vaccines and drugs against tuberculosis (TB), success has remained elusive. Immunotherapy of TB with mycobacterial Hsp65 as a DNA vaccine (DNA-hsp65) results in a reduction of systemic bacterial loads and lung tissue damage, but the high homology of Hsp65 with the mammalian protein raises concern that pathological autoimmune responses may also be triggered. We searched for autoimmune responses elicited by DNA-hsp65 immunotherapy in mice chronically infected with TB by evaluating the humoral immune response and comprehensive histopathology using stereology. Cross-reactive antibodies between mycobacterial and mammalian Hsp60/65 were detected; however, no signs of pathological autoimmunity were found up to 60 days after the end of the therapy.


Subject(s)
Antibodies, Bacterial/immunology , Autoimmunity/immunology , Bacterial Proteins/immunology , Chaperonin 60/immunology , Mitochondrial Proteins/immunology , Mycobacterium leprae/immunology , Vaccines, DNA/immunology , Animals , Autoimmunity/drug effects , Bacterial Proteins/administration & dosage , Chaperonin 60/administration & dosage , Chaperonin 60/antagonists & inhibitors , Cross Reactions/drug effects , Cross Reactions/immunology , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Mitochondrial Proteins/antagonists & inhibitors , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/immunology , Vaccines, DNA/administration & dosage
2.
Genet Vaccines Ther ; 9: 5, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21401938

ABSTRACT

BACKGROUND: Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown. METHODS: In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge. RESULTS: In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice. CONCLUSIONS: These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model.

3.
Transgenic Res ; 20(2): 221-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20526808

ABSTRACT

Transgenic plants are able to express molecules with antigenic properties. In recent years, this has led the pharmaceutical industry to use plants as alternative systems for the production of recombinant proteins. Plant-produced recombinant proteins can have important applications in therapeutics, such as in the treatment of rheumatoid arthritis (RA). In this study, the mycobacterial HSP65 protein expressed in tobacco plants was found to be effective as a treatment for adjuvant-induced arthritis (AIA). We cloned the hsp65 gene from Mycobacterium leprae into plasmid pCAMBIA 2301 under the control of the double 35S promoter from cauliflower mosaic virus. Agrobacterium tumefaciens bearing the pChsp65 plasmid was used to transform tobacco plants. Incorporation of the hsp65 gene was confirmed by PCR, reverse transcription-PCR, histochemistry, and western blot analyses in several transgenic lines of tobacco plants. Oral treatment of AIA rats with the HSP65 protein allowed them to recover body weight and joint inflammation was reduced. Our results suggest a synergistic effect between the HSP65 expressed protein and metabolites presents in tobacco plants.


Subject(s)
Arthritis, Experimental/drug therapy , Bacterial Proteins/therapeutic use , Chaperonin 60/therapeutic use , Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Administration, Oral , Agrobacterium tumefaciens/genetics , Animals , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blotting, Western , Chaperonin 60/administration & dosage , Chaperonin 60/genetics , Chaperonin 60/metabolism , Humans , Mycobacterium leprae/genetics , Mycobacterium leprae/metabolism , Plants, Genetically Modified/genetics , Plasmids , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Nicotiana/genetics , Treatment Outcome
4.
BMC Biotechnol ; 10: 77, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20961459

ABSTRACT

BACKGROUND: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. RESULTS: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 µg of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c+, CD11b+ and CD19+ cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). CONCLUSIONS: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.


Subject(s)
Bacterial Proteins/administration & dosage , Chaperonin 60/administration & dosage , Genetic Therapy , RNA, Messenger/administration & dosage , Tuberculosis Vaccines/administration & dosage , Tuberculosis/prevention & control , Administration, Intranasal , Animals , Antigen-Presenting Cells/immunology , Bacterial Proteins/immunology , Cell Line , Chaperonin 60/immunology , Female , HEK293 Cells , Humans , Interleukin-10/immunology , Lung/cytology , Lung/immunology , Mice , Mice, Inbred BALB C , Mycobacterium leprae/immunology , Mycobacterium tuberculosis/pathogenicity , RNA, Messenger/immunology , Tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tumor Necrosis Factor-alpha/immunology
5.
PLoS Negl Trop Dis ; 4(6): e700, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20544012

ABSTRACT

BACKGROUND: Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65. METHODOLOGY/PRINCIPAL FINDINGS: Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-gamma production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-beta and IL-10 production, which could be associated with long-term protection. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections.


Subject(s)
Schistosomiasis mansoni/microbiology , Toxocariasis/microbiology , Tuberculosis Vaccines/immunology , Tuberculosis/parasitology , Vaccines, DNA/immunology , Analysis of Variance , Animals , Bacterial Proteins/genetics , Chaperonin 60/genetics , Disease Models, Animal , Female , Helminths , Interferon-gamma , Interleukins/metabolism , Lung/metabolism , Mice , Mice, Inbred BALB C , Nitrites/metabolism , Schistosoma mansoni , Schistosomiasis mansoni/immunology , Th1 Cells/metabolism , Toxocara canis , Tuberculosis/drug therapy , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis Vaccines/pharmacology , Vaccines, DNA/pharmacology
6.
Vaccine ; 28(6): 1528-34, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20045500

ABSTRACT

The conventional treatment for paracoccidioidomycosis, the most prevalent mycosis in Latin America, involves long periods of therapy resulting in sequels and high frequency of relapses. The search for new alternatives of treatment is necessary. Previously, we have demonstrated that the hsp65 gene from Mycobacterium leprae shows prophylactic effects against murine paracoccidioidomycosis. Here, we tested the DNAhsp65 immunotherapy in BALB/c mice infected with Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. We observed an increase of Th1 cytokines accompanied by a reduction in fungal burden and pulmonary injury. These results provide new prospects for immunotherapy of paracoccidioidomycosis and other mycoses.


Subject(s)
Bacterial Proteins/immunology , Chaperonin 60/immunology , Immunotherapy/methods , Mycobacterium leprae/immunology , Paracoccidioidomycosis/prevention & control , Vaccines, DNA/immunology , Animals , Bacterial Proteins/genetics , Chaperonin 60/genetics , Cytokines/metabolism , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Mycobacterium leprae/genetics , Paracoccidioides/immunology , Vaccines, DNA/administration & dosage
7.
Vaccine ; 27(4): 606-13, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19028537

ABSTRACT

Heat-shock proteins are molecules with extensive data showing their potential as immunomodulators of different types of diseases. The gene of HSP65 from Mycobacterium leprae has shown prophylactic and immunotherapeutic effects against a broad arrays of experimental models including tuberculosis, leishmaniasis, arthritis and diabetes. With this in mind, we tested the DNAhsp65 vaccine using an experimental model of Paraccocidiodomycosis, an important endemic mycosis in Latin America. The intramuscular immunization with DNAhsp65 induced, in BALB/c mice, an increase of Th1-levels cytokines and a reduction of fungal burdens resulted in a marked reduction of collagen and lung remodeling. DNAhsp65 may be an attractive candidate for prevention, therapy and as an adjuvant for mycosis treatment.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Chaperonins/immunology , Paracoccidioides/immunology , Paracoccidioidomycosis/prevention & control , Vaccines, DNA/immunology , Animals , Bacterial Vaccines/administration & dosage , Chaperonin 60 , Male , Mice , Mice, Inbred BALB C , Mycobacterium leprae/genetics , Mycobacterium leprae/metabolism , Paracoccidioidomycosis/immunology , Vaccination , Vaccines, DNA/genetics
8.
Expert Opin Biol Ther ; 8(9): 1255-64, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18694348

ABSTRACT

BACKGROUND: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. METHODS: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime-boost with subcutaneous BCG and intramuscular DNAhsp65. RESULTS: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime-boost strategies. CONCLUSION: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Chaperonins/immunology , Mycobacterium leprae/metabolism , Tuberculosis/prevention & control , Animals , Bacterial Proteins/metabolism , Bacterial Vaccines/administration & dosage , Chaperonin 60 , Chaperonins/metabolism , DNA, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay , Female , Mice , Mice, Inbred BALB C , Mycobacterium leprae/genetics , Plasmids
9.
Genet Vaccines Ther ; 6: 3, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18208592

ABSTRACT

BACKGROUND: A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. METHODS: To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. RESULTS: It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. CONCLUSION: Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy.

10.
Genet Vaccines Ther ; 5: 12, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18047644

ABSTRACT

BACKGROUND: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. METHODS: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. RESULTS: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. CONCLUSION: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.

11.
Hum Gene Ther ; 16(11): 1338-45, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16259568

ABSTRACT

We described a prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65-kDa heat shock protein (DNA-hsp65) in experimental murine tuberculosis. However, high homology of the vaccine to the corresponding mammalian hsp60, together with the CpG motifs in the plasmidial vector, could trigger or exacerbate an autoimmune disease. In the present study, we evaluate the potential of DNA-hsp65 vaccination to induce or modulate arthritis in mice genetically selected for acute inflammatory reaction (AIR), either maximal (AIRmax) or minimal (AIRmin). Mice immunized with DNA-hsp65 or injected with the corresponding DNA vector (DNAv) developed no arthritis, whereas pristane injection resulted in arthritis in 62% of AIRmax mice and 7.3% of AIRmin mice. Administered after pristane, DNA-hsp65 downregulated arthritis induction in AIRmax animals. Levels of interleukin (IL)-12 were significantly lower in mice receiving pristane plus DNA-hsp65 or DNAv than in mice receiving pristane alone. However, when mice previously injected with pristane were inoculated with DNA-hsp65 or DNAv, the protective effect was significantly correlated with lower IL-6 and IL-12 levels and higher IL-10 levels. Our results strongly suggest that DNA-hsp65 has no arthritogenic potential and is actually protective against experimentally induced arthritis in mice.


Subject(s)
Arthritis/prevention & control , Bacterial Proteins/administration & dosage , Chaperonins/administration & dosage , DNA/administration & dosage , Disease Models, Animal , Animals , Chaperonin 60 , Enzyme-Linked Immunosorbent Assay , Interleukin-12/metabolism , Mice
12.
Biochemistry ; 41(23): 7400-6, 2002 Jun 11.
Article in English | MEDLINE | ID: mdl-12044173

ABSTRACT

The present study reports, for the first time, that the recombinant hsp65 from Mycobacterium leprae (chaperonin 2) displays a proteolytic activity toward oligopeptides. The M. leprae hsp65 proteolytic activity revealed a trypsin-like specificity toward quenched fluorescence peptides derived from dynorphins. When other peptide substrates were used (beta-endorphin, neurotensin, and angiotensin I), the predominant peptide bond cleavages also involved basic amino acids in P(1), although, to a minor extent, the hydrolysis involving hydrophobic and neutral amino acids (G and F) was also observed. The amino acid sequence alignment of the M. leprae hsp65 with Escherichia coli HslVU protease suggested two putative threonine catalytic groups, one in the N-domain (T(136), K(168), and Y(264)) and the other in the C-domain (T(375), K(409), and S(502)). Mutagenesis studies showed that the replacement of K(409) by A caused a complete loss of the proteolytic activity, whereas the mutation of K(168) to A resulted in a 25% loss. These results strongly suggest that the amino acid residues T(375), K(409), and S(502) at the C-domain form the catalytic group that carries out the main proteolytic activity of the M. leprae hsp65. The possible pathophysiological implications of the proteolytic activity of the M. leprae hsp65 are now under investigation in our laboratory.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , Chaperonins/metabolism , Endopeptidases/metabolism , Escherichia coli/enzymology , Heat-Shock Proteins , Mutagenesis, Site-Directed , Mycobacterium leprae/enzymology , Serine Endopeptidases , ATP-Dependent Proteases , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , Amino Acid Substitution/genetics , Amino Acids/analysis , Amino Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Caseins/metabolism , Catalysis , Chaperonin 60 , Chaperonins/genetics , Chaperonins/isolation & purification , Endopeptidases/chemistry , Hydrolysis , Molecular Sequence Data , Mycobacterium leprae/genetics , Peptide Fragments/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL