Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Infect Dis ; 71(8): e262-e269, 2020 11 05.
Article in English | MEDLINE | ID: mdl-31732729

ABSTRACT

BACKGROUND: Mycobacterium leprae was thought to be the exclusive causative agent of leprosy until Mycobacterium lepromatosis was identified in a rare form of leprosy known as diffuse lepromatous leprosy (DLL). METHODS: We isolated M. lepromatosis from a patient with DLL and propagated it in athymic nude mouse footpads. Genomic analysis of this strain (NHDP-385) identified a unique repetitive element, RLPM, on which a specific real-time quantitative polymerase chain reaction assay was developed. The RLPM assay, and a previously developed RLEP quantitative polymerase chain reaction assay for M. leprae, were validated as clinical diagnostic assays according to Clinical Laboratory Improvement Amendments guidelines. We tested DNA from archived histological sections, patient specimens from the United States, Philippines, and Mexico, and US wild armadillos. RESULTS: The limit of detection for the RLEP and RLPM assays is 30 M. leprae per specimen (0.76 bacilli per reaction; coefficient of variation, 0.65%-2.44%) and 122 M. lepromatosis per specimen (3.05 bacilli per reaction; 0.84%-2.9%), respectively. In histological sections (n = 10), 1 lepromatous leprosy (LL), 1 DLL, and 3 Lucio reactions contained M. lepromatosis; 2 LL and 2 Lucio reactions contained M. leprae; and 1 LL reaction contained both species. M. lepromatosis was detected in 3 of 218 US biopsy specimens (1.38%). All Philippines specimens (n = 180) were M. lepromatosis negative and M. leprae positive. Conversely, 15 of 47 Mexican specimens (31.91%) were positive for M. lepromatosis, 19 of 47 (40.43%) were positive for M. leprae, and 2 of 47 (4.26%) contained both organisms. All armadillos were M. lepromatosis negative. CONCLUSIONS: The RLPM and RLEP assays will aid healthcare providers in the clinical diagnosis and surveillance of leprosy.


Subject(s)
Mycobacterium leprae , Mycobacterium , Animals , Humans , Mexico , Mice , Mycobacterium leprae/genetics , Pathology, Molecular
2.
Int J Mycobacteriol ; 6(1): 52-60, 2017.
Article in English | MEDLINE | ID: mdl-28317806

ABSTRACT

OBJECTIVE/BACKGROUND: Mycobacterium lepraemurium (MLM), the etiologic agent of murine leprosy, is an intracellular parasite of macrophages; the mechanism used by this bacterium to enter macrophages is not known. The fate of the MLM phagosome inside macrophages is also unknown. This study was conducted to investigate how MLM enters macrophages and to define the maturation process of MLM phagosome inside macrophages. MATERIALS AND METHODS: Peritoneal macrophages were incubated in the presence of mannan-bovine serum albumin (BSA), and antibodies to known macrophage receptors, including, anti-FcγRIII/RII (anti-CD16/32), anti-CD35 (anti-CR1), anti-TLR2, anti-TLR4, anti-TLR6, anti-CD14, and anti-dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). Then, macrophages were challenged with Iris Fuchsia-stained MLM, at a multiplicity of infection of 50:1. The blocking effect of the antibodies (and mannan-BSA) used was analyzed using direct microscopy and flow cytometry. The maturation process of MLM phagosomes was visualized by their interaction with antibodies to Rab5, Rab7, proton ATPase, and cathepsin D, by confocal microscopy. RESULTS: Only mannan-BSA and anti-TLR6 antibody significantly blocked the entry of MLM into macrophages. None of the other antibodies, including that for DC-SIGN, meaningfully inhibited the endocytic process. We also found that MLM is a fusiogenic mycobacterium. This was deduced from the orderly association of MLM phagosomes with Rab5, Rab7, Proton ATPase, and lysosomes (cathepsin D). CONCLUSION: Fusion of MLM phagosomes with lysosomes seems to be a necessary event for the intracellular multiplication of MLM; similar to Mycobacterium leprae, this microorganism hardly grows on artificial, synthetic, bacteriologic media.


Subject(s)
Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Macrophages, Peritoneal/microbiology , Mannose-Binding Lectins/metabolism , Mycobacterium lepraemurium/physiology , Receptors, Cell Surface/metabolism , Toll-Like Receptor 6/metabolism , Animals , Cell Adhesion Molecules/immunology , Lectins, C-Type/immunology , Lysosomes/microbiology , Macrophages, Peritoneal/drug effects , Mannose Receptor , Mannose-Binding Lectins/immunology , Membrane Microdomains/physiology , Mice , Mycobacterium lepraemurium/drug effects , Mycobacterium lepraemurium/immunology , Phagosomes/immunology , Phagosomes/microbiology , Receptors, Cell Surface/immunology , Receptors, IgG/immunology , Toll-Like Receptor 6/immunology
3.
Int J Exp Pathol ; 88(3): 137-45, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17504443

ABSTRACT

Murine leprosy is a natural disease of the mouse, the most popular model animal used in biomedical research; the disease is caused by Mycobacterium lepraemurium (MLM), a successful parasite of macrophages. The aim of the study was to test the hypothesis that MLM survives within macrophages because it highly resists the toxic effects of the reactive oxygen intermediaries produced by these cells in response to infection by the microorganism. MLM cells were incubated in the presence of horseradish peroxidase (HRPO)-H(2)O(2)-halide for several periods of time. The peroxidative effect of this system was investigated by assessing the changes occurred in (a) lipid composition; (b) viability; and (c) infectivity of the microorganism. Changes in the lipid composition of peroxidated- vs. intact-MLM were analysed by thin layer chromatography. The effect of the peroxidative system on the viability and infectivity of MLM was measured by the alamar blue reduction assay and by its ability to produce an infection in the mouse, respectively. Peroxidation of MLM produced drastic changes in the lipid envelope of the microorganism, killed the bacteria and abolished their ability to produce an in vivo infection in the mouse. In vitro, MLM is highly susceptible to the noxious effects of the HRPO-H(2)O(2)-halide system. Although the lipid envelope of MLM might protect the microorganism from the peroxidative substances produced at 'physiological' concentrations in vivo, the success of MLM as a parasite of macrophages might rather obey for other reasons. The ability of MLM to enter macrophages without triggering these cells' oxidative response and the lack of granular MPO in mature macrophages might better explain its success as an intracellular parasite of these cells.


Subject(s)
Hydrogen Peroxide/pharmacology , Lipid Metabolism , Macrophages/microbiology , Mycobacterium lepraemurium/physiology , Animals , Bacteriological Techniques , Chromatography, Thin Layer , Horseradish Peroxidase/pharmacology , Leprosy/transmission , Mice , Microbial Viability/drug effects , Oxidation-Reduction , Virulence/drug effects
4.
Int J Exp Pathol ; 87(6): 485-94, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17222216

ABSTRACT

Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression.


Subject(s)
Cyclooxygenase 2/analysis , Leprosy/metabolism , Mycobacterium lepraemurium , Nitric Oxide Synthase Type II/analysis , Orosomucoid/analysis , Animals , Chronic Disease , Female , Granuloma/immunology , Granuloma/metabolism , Immunohistochemistry/methods , Leprosy/immunology , Mice , Mice, Inbred Strains , Models, Animal , Mycobacterium lepraemurium/physiology , Staining and Labeling , Tyrosine/analogs & derivatives , Tyrosine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL