Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
ACS Infect Dis ; 9(8): 1458-1469, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37428112

ABSTRACT

Intra-household contacts (HCs) of leprosy patients are at increased risk of infection by Mycobacterium leprae and about ∼5-10% will develop active disease. A prognostic tool to identify HCs with the greatest risk of progressing to active disease would enhance early leprosy diagnosis and optimize prophylactic intervention. Previous metabolomics studies suggest that host lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are potential biomarkers for leprosy. In this study, we investigated retrospective sera of leprosy HCs by liquid chromatography-mass spectrometry and enzyme-linked immunoassay to determine whether circulating levels of ω-3 and ω-6 PUFA metabolites were altered in HCs that developed leprosy (HCDL) in comparison to those that did not (HCNDL). Sera were collected from HCs at the time of index case diagnosis and before clinical signs/symptoms of leprosy. Our findings showed that HCDL sera exhibited a distinct metabolic profile in comparison to HCDNL. Specifically, arachidonic acid, leukotriene B4, 11-hydroxyeicosatetraenoic acid, prostaglandin D2, and lipoxin A4 were elevated in HCDL. In contrast, prostaglandin E2 levels were reduced in HCDL. The ω-3 PUFAs, docosahexaenoic acid, eicosapentaenoic acid, and the docosahexaenoic acid-derived resolvin D1 and maresin-1 were also elevated in HCDL individuals compared to HCNDL. Principal component analyses provided further evidence that lipid mediators could serve as an early biomarker for progression to active leprosy. A logistic model identified resolvin D1 and D2, and prostaglandin D2 as having the greatest potential for early detection of HCs that will manifest leprosy.


Subject(s)
Fatty Acids, Omega-3 , Leprosy , Humans , Docosahexaenoic Acids , Mycobacterium leprae/metabolism , Retrospective Studies , Fatty Acids, Unsaturated/metabolism , Leprosy/diagnosis , Prostaglandins , Biomarkers
2.
Comp Immunol Microbiol Infect Dis ; 68: 101397, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31775113

ABSTRACT

Leprosy was recognized as a zoonotic disease, associated with nine-banded armadillos (Dasypus novemcinctus) in the Southern United States of America in 2011. In addition, there is growing evidence to support a role for armadillos in zoonotic leprosy in South America. The current study evaluated twenty specimens of the six-banded armadillo (Euphractus sexcinctus), collected from rural locations in the state of Rio Grande do Norte (RN), Brazil for evidence of infection with Mycobacterium leprae. Serum was examined using two "in-house" enzyme-linked immunosorbent assays (ELISAs) and via two commercially available (ML flow and NDO-LID®) immunochromatographic lateral flow (LF) tests, for detection of the PGL-I and/or LID-1 antigens of the bacterium. The presence of M. leprae DNA in liver tissue was examined using the multi-copy, M. leprae-specific repetitive element (RLEP), as target in conventional and nested PCR assays. Molecular and anti-PGL-I-ELISA data indicated that 20/20 (100 %) of the armadillos were infected with M. leprae. The corresponding detection levels recorded with the LF tests were 17/20 (85 %) and 16/20 (85 %), for the NDO-LID® and ML flow tests, respectively. Our results indicate that, in common with D. novemcinctus, six banded armadillos (a species hunted and reared as a food-source in some regions of Brazil, including RN), represent a potential reservoir of M. leprae and as such, their role in a possible zoonotic cycle of leprosy within Brazil warrants further investigation.


Subject(s)
Armadillos/microbiology , Disease Reservoirs/veterinary , Leprosy/veterinary , Mycobacterium leprae/genetics , Mycobacterium leprae/immunology , Animals , Brazil/epidemiology , Disease Reservoirs/microbiology , Enzyme-Linked Immunosorbent Assay , Female , Leprosy/epidemiology , Male , Polymerase Chain Reaction , Zoonoses/epidemiology , Zoonoses/microbiology
3.
Appl Immunohistochem Mol Morphol ; 22(3): 222-30, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23702646

ABSTRACT

The diagnosis of pure neural leprosy (PNL) is based on clinical and laboratory data, including the histopathology of nerve biopsy specimens and detection of Mycobacterium leprae DNA by polymerase chain reaction (PCR). Given that histopathologic examination and PCR methods may not be sufficient to confirm the diagnosis, immunolabeling of lipoarabinomanan (LAM) and/or phenolic glycolipid 1 (PGL-1) M. leprae wall components was utilized in the present investigation in an attempt to detect any vestigial presence of M. leprae in acid-fast bacilli (AFB) nerve samples. Twenty-three PNL nerve samples (6 AFB and 17 AFBPCR) were cryosectioned and subjected to LAM and PGL-1 immunohistochemical staining by immunoperoxidase. Five nonleprosy nerve samples were used as controls. The 6 AFB samples showed LAM/PGL-1 immunoreactivity. Among the 17 AFB samples, 8 revealed LAM and/or PGL-1 immunoreactivity. In 17 AFBPCR patients, just 7 yielded LAM and/or PGL-1 nerve results. In the PNL cases, the detection of immunolabeled LAM and PGL-1 in the nerve samples would have contributed to an enhanced diagnostic efficiency in the absence of molecular diagnostic facilities.


Subject(s)
Antigens, Bacterial/metabolism , DNA, Bacterial/analysis , Glycolipids/metabolism , Leprosy, Tuberculoid/diagnosis , Lipopolysaccharides/metabolism , Mycobacterium leprae/genetics , Peripheral Nerves/metabolism , Adolescent , Adult , Aged , Biopsy , Female , Humans , Immunohistochemistry , Male , Middle Aged , Peripheral Nerves/immunology , Quality Improvement , Young Adult
4.
Microbes Infect ; 5(7): 677-84, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12787744

ABSTRACT

More than one century after the discovery of their etiological agents, tuberculosis and leprosy remain as major health threats for humans, and the molecular mechanisms that lead to the development of both diseases are poorly understood. The elucidation of these mechanisms, and especially those allowing for the mycobacteria to systemically disseminate, should facilitate the development of new prophylactic and/or therapeutic strategies. This review is focused on the routes that Mycobacterium tuberculosis and Mycobacterium leprae may use to disseminate within the human body, and the potential roles played by recently characterized adhesins in this process.


Subject(s)
Adhesins, Bacterial/physiology , Leprosy/microbiology , Mycobacterium leprae/pathogenicity , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , Humans , Leprosy/pathology , Mycobacterium leprae/ultrastructure , Mycobacterium tuberculosis/ultrastructure , Tuberculosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL