Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Infect Dis Poverty ; 12(1): 12, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36800979

ABSTRACT

BACKGROUND: Leprosy is an infectious disease caused by Mycobacterium leprae and remains a source of preventable disability if left undetected. Case detection delay is an important epidemiological indicator for progress in interrupting transmission and preventing disability in a community. However, no standard method exists to effectively analyse and interpret this type of data. In this study, we aim to evaluate the characteristics of leprosy case detection delay data and select an appropriate model for the variability of detection delays based on the best fitting distribution type. METHODS: Two sets of leprosy case detection delay data were evaluated: a cohort of 181 patients from the post exposure prophylaxis for leprosy (PEP4LEP) study in high endemic districts of Ethiopia, Mozambique, and Tanzania; and self-reported delays from 87 individuals in 8 low endemic countries collected as part of a systematic literature review. Bayesian models were fit to each dataset to assess which probability distribution (log-normal, gamma or Weibull) best describes variation in observed case detection delays using leave-one-out cross-validation, and to estimate the effects of individual factors. RESULTS: For both datasets, detection delays were best described with a log-normal distribution combined with covariates age, sex and leprosy subtype [expected log predictive density (ELPD) for the joint model: -1123.9]. Patients with multibacillary (MB) leprosy experienced longer delays compared to paucibacillary (PB) leprosy, with a relative difference of 1.57 [95% Bayesian credible interval (BCI): 1.14-2.15]. Those in the PEP4LEP cohort had 1.51 (95% BCI: 1.08-2.13) times longer case detection delay compared to the self-reported patient delays in the systematic review. CONCLUSIONS: The log-normal model presented here could be used to compare leprosy case detection delay datasets, including PEP4LEP where the primary outcome measure is reduction in case detection delay. We recommend the application of this modelling approach to test different probability distributions and covariate effects in studies with similar outcomes in the field of leprosy and other skin-NTDs.


Subject(s)
Leprosy, Multibacillary , Leprosy, Paucibacillary , Leprosy , Humans , Bayes Theorem , Leprosy/diagnosis , Leprosy/epidemiology , Leprosy/drug therapy , Mycobacterium leprae
3.
Infect Dis Poverty ; 10(1): 36, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33752751

ABSTRACT

BACKGROUND: Leprosy is known to be unevenly distributed between and within countries. High risk areas or 'hotspots' are potential targets for preventive interventions, but the underlying epidemiologic mechanisms that enable hotspots to emerge, are not yet fully understood. In this study, we identified and characterized leprosy hotspots in Bangladesh, a country with one of the highest leprosy endemicity levels globally. METHODS: We used data from four high-endemic districts in northwest Bangladesh including 20 623 registered cases between January 2000 and April 2019 (among ~ 7 million population). Incidences per union (smallest administrative unit) were calculated using geospatial population density estimates. A geospatial Poisson model was used to detect incidence hotspots over three (overlapping) 10-year timeframes: 2000-2009, 2005-2014 and 2010-2019. Ordinal regression models were used to assess whether patient characteristics were significantly different for cases outside hotspots, as compared to cases within weak (i.e., relative risk (RR) of one to two), medium (i.e., RR of two to three), and strong (i.e., RR higher than three) hotspots. RESULTS: New case detection rates dropped from 44/100 000 in 2000 to 10/100 000 in 2019. Statistically significant hotspots were identified during all timeframes and were often located at areas with high population densities. The RR for leprosy was up to 12 times higher for inhabitants of hotspots than for people living outside hotspots. Within strong hotspots (1930 cases among less than 1% of the population), significantly more child cases (i.e., below 15 years of age) were detected, indicating recent transmission. Cases in hotspots were not significantly more likely to be detected actively. CONCLUSIONS: Leprosy showed a heterogeneous distribution with clear hotspots in northwest Bangladesh throughout a 20-year period of decreasing incidence. Findings confirm that leprosy hotspots represent areas of higher transmission activity and are not solely the result of active case finding strategies.


Subject(s)
Leprosy , Bangladesh/epidemiology , Child , Humans , Incidence , Leprosy/epidemiology , Retrospective Studies , Risk
4.
PLoS Negl Trop Dis ; 15(2): e0009146, 2021 02.
Article in English | MEDLINE | ID: mdl-33630836

ABSTRACT

BACKGROUND: Worldwide, around 210,000 new cases of leprosy are detected annually. To end leprosy, i.e. zero new leprosy cases, preventive interventions such as contact tracing and post-exposure prophylaxis (PEP) are required. This study aims to estimate the number of people requiring PEP to reduce leprosy new case detection (NCD) at national and global level by 50% and 90%. METHODOLOGY/PRINCIPAL FINDINGS: The individual-based model SIMCOLEP was fitted to seven leprosy settings defined by NCD and MB proportion. Using data of all 110 countries with known leprosy patients in 2016, we assigned each country to one of these settings. We predicted the impact of administering PEP to about 25 contacts of leprosy patients on the annual NCD for 25 years and estimated the number of contacts requiring PEP per country for each year. The NCD trends show an increase in NCD in the first year (i.e. backlog cases) followed by a significant decrease thereafter. A reduction of 50% and 90% of new cases would be achieved in most countries in 5 and 22 years if 20.6 and 40.2 million people are treated with PEP over that period, respectively. For India, Brazil, and Indonesia together, a total of 32.9 million people requiring PEP to achieve a 90% reduction in 22 years. CONCLUSION/SIGNIFICANCE: The leprosy problem is far greater than the 210,000 new cases reported annually. Our model estimates of the number of people requiring PEP to achieve significant reduction of new leprosy cases can be used by policymakers and program managers to develop long-term strategies to end leprosy.


Subject(s)
Leprostatic Agents/therapeutic use , Leprosy/therapy , Post-Exposure Prophylaxis , Adolescent , Brazil , Child , Child, Preschool , Contact Tracing , Humans , India , Indonesia , Leprosy/diagnosis , Leprosy/epidemiology , Models, Theoretical , Young Adult
5.
PLoS Negl Trop Dis ; 12(5): e0006529, 2018 05.
Article in English | MEDLINE | ID: mdl-29799844

ABSTRACT

BACKGROUND: The availability of a diagnostic test to detect subclinical leprosy cases is crucial to interrupt the transmission of M. leprae. In this study we assessed the minimum sensitivity level of such a (hypothetical) diagnostic test and the optimal testing strategy in order to effectively reduce the new case detection rate (NCDR) of leprosy. METHODS AND FINDINGS: We used the individual-based model SIMCOLEP, and based it on previous quantification using COLEP data, a cohort study of leprosy cases in Bangladesh. The baseline consisted of treatment with Multidrug therapy of clinically diagnosed leprosy cases, passive case detection and household contact tracing. We examined the use of a leprosy diagnostic test for subclinical leprosy in four strategies: testing in 1) household contacts, 2) household contacts with a 3-year follow-up, 3) a population survey with coverage 50%, and 4) a population survey (100%). For each strategy, we varied the test sensitivity between 50% and 100%. All analyses were conducted for a high, medium, and low (i.e. 25, 5 and 1 per 100,000) endemic setting over a period of 50 years. In all strategies, the use of a diagnostic test further reduces the NCDR of leprosy compared to the no test strategy. A substantial reduction could already be achieved at a test sensitivity as low as 50%. In a high endemic setting, a NCDR of 10 per 100,000 could be reached within 8-10 years in household contact testing, and 2-6 years in a population testing. Testing in a population survey could also yield the highest number of prevented new cases, but requires a large number needed to test and treat. In contrast, household contact testing has a smaller impact on the NCDR but requires a substantially lower number needed to test and treat. CONCLUSIONS: A diagnostic test for subclinical leprosy with a sensitivity of at least 50% could substantially reduce M. leprae transmission. To effectively reduce NCDR in the short run, a population survey is preferred over household contact tracing. However, this is only favorable in high endemic settings.


Subject(s)
Leprosy/diagnosis , Leprosy/transmission , Contact Tracing , Diagnostic Tests, Routine , Female , Humans , Leprosy/microbiology , Male , Models, Theoretical , Mycobacterium leprae/isolation & purification , Mycobacterium leprae/physiology
6.
PLoS Negl Trop Dis ; 12(3): e0006250, 2018 03.
Article in English | MEDLINE | ID: mdl-29534061

ABSTRACT

BACKGROUND: The control or elimination of neglected tropical diseases (NTDs) has targets defined by the WHO for 2020, reinforced by the 2012 London Declaration. We estimated the economic impact to individuals of meeting these targets for human African trypanosomiasis, leprosy, visceral leishmaniasis and Chagas disease, NTDs controlled or eliminated by innovative and intensified disease management (IDM). METHODS: A systematic literature review identified information on productivity loss and out-of-pocket payments (OPPs) related to these NTDs, which were combined with projections of the number of people suffering from each NTD, country and year for 2011-2020 and 2021-2030. The ideal scenario in which the WHO's 2020 targets are met was compared with a counterfactual scenario that assumed the situation of 1990 stayed unaltered. Economic benefit equaled the difference between the two scenarios. Values are reported in 2005 US$, purchasing power parity-adjusted, discounted at 3% per annum from 2010. Probabilistic sensitivity analyses were used to quantify the degree of uncertainty around the base-case impact estimate. RESULTS: The total global productivity gained for the four IDM-NTDs was I$ 23.1 (I$ 15.9 -I$ 34.0) billion in 2011-2020 and I$ 35.9 (I$ 25.0 -I$ 51.9) billion in 2021-2030 (2.5th and 97.5th percentiles in brackets), corresponding to US$ 10.7 billion (US$ 7.4 -US$ 15.7) and US$ 16.6 billion (US$ 11.6 -US$ 24.0). Reduction in OPPs was I$ 14 billion (US$ 6.7 billion) and I$ 18 billion (US$ 10.4 billion) for the same periods. CONCLUSIONS: We faced important limitations to our work, such as finding no OPPs for leprosy. We had to combine limited data from various sources, heterogeneous background, and of variable quality. Nevertheless, based on conservative assumptions and subsequent uncertainty analyses, we estimate that the benefits of achieving the targets are considerable. Under plausible scenarios, the economic benefits far exceed the necessary investments by endemic country governments and their development partners. Given the higher frequency of NTDs among the poorest households, these investments represent good value for money in the effort to improve well-being, distribute the world's prosperity more equitably and reduce inequity.


Subject(s)
Disease Eradication/economics , Global Health/statistics & numerical data , Neglected Diseases/economics , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Disease Management , Global Health/economics , Health Expenditures , Humans , Poverty , Review Literature as Topic
7.
Epidemics ; 18: 92-100, 2017 03.
Article in English | MEDLINE | ID: mdl-28279460

ABSTRACT

BACKGROUND: Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins. METHODS: A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012-2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches. RESULTS: Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000. CONCLUSIONS: All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated.


Subject(s)
Leprosy/diagnosis , Leprosy/epidemiology , Models, Statistical , Brazil/epidemiology , Forecasting , Humans , Incidence
8.
Lancet Infect Dis ; 16(10): 1113, 2016 10.
Article in English | MEDLINE | ID: mdl-27676349

Subject(s)
Leprosy , Humans
9.
PLoS Negl Trop Dis ; 10(5): e0004546, 2016 05.
Article in English | MEDLINE | ID: mdl-27171166

ABSTRACT

BACKGROUND: Neglected tropical diseases (NTDs) are generally assumed to be concentrated in poor populations, but evidence on this remains scattered. We describe within-country socioeconomic inequalities in nine NTDs listed in the London Declaration for intensified control and/or elimination: lymphatic filariasis (LF), onchocerciasis, schistosomiasis, soil-transmitted helminthiasis (STH), trachoma, Chagas' disease, human African trypanosomiasis (HAT), leprosy, and visceral leishmaniasis (VL). METHODOLOGY: We conducted a systematic literature review, including publications between 2004-2013 found in Embase, Medline (OvidSP), Cochrane Central, Web of Science, Popline, Lilacs, and Scielo. We included publications in international peer-reviewed journals on studies concerning the top 20 countries in terms of the burden of the NTD under study. PRINCIPAL FINDINGS: We identified 5,516 publications, of which 93 met the inclusion criteria. Of these, 59 papers reported substantial and statistically significant socioeconomic inequalities in NTD distribution, with higher odds of infection or disease among poor and less-educated people compared with better-off groups. The findings were mixed in 23 studies, and 11 studies showed no substantial or statistically significant inequality. Most information was available for STH, VL, schistosomiasis, and, to a lesser extent, for trachoma. For the other NTDs, evidence on their socioeconomic distribution was scarce. The magnitude of inequality varied, but often, the odds of infection or disease were twice as high among socioeconomically disadvantaged groups compared with better-off strata. Inequalities often took the form of a gradient, with higher odds of infection or disease each step down the socioeconomic hierarchy. Notwithstanding these inequalities, the prevalence of some NTDs was sometimes also high among better-off groups in some highly endemic areas. CONCLUSIONS: While recent evidence on socioeconomic inequalities is scarce for most individual NTDs, for some, there is considerable evidence of substantially higher odds of infection or disease among socioeconomically disadvantaged groups. NTD control activities as proposed in the London Declaration, when set up in a way that they reach the most in need, will benefit the poorest populations in poor countries.


Subject(s)
Neglected Diseases/epidemiology , Tropical Medicine , Chagas Disease/epidemiology , Child , Elephantiasis, Filarial/epidemiology , Humans , Leishmaniasis, Visceral/epidemiology , Leprosy/epidemiology , Schistosomiasis/epidemiology , Social Class , Soil/parasitology
10.
PLoS Negl Trop Dis ; 10(5): e0004560, 2016 05.
Article in English | MEDLINE | ID: mdl-27171193

ABSTRACT

BACKGROUND: The World Health Organization (WHO) has set ambitious time-bound targets for the control and elimination of neglected tropical diseases (NTDs). Investing in NTDs is not only seen as good value for money, but is also advocated as a pro-poor policy since it would improve population health in the poorest populations. We studied the extent to which the disease burden from nine NTDs (lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths, trachoma, Chagas disease, human African trypanosomiasis, leprosy, visceral leishmaniasis) was concentrated in the poorest countries in 1990 and 2010, and how this would change by 2020 in case the WHO targets are met. PRINCIPAL FINDINGS: Our analysis was based on 1990 and 2010 data from the Global Burden of Disease (GBD) 2010 study and on projections of the 2020 burden. Low and lower-middle income countries together accounted for 69% and 81% of the global burden in 1990 and 2010 respectively. Only the soil-transmitted helminths and Chagas disease caused a considerable burden in upper-middle income countries. The global burden from these NTDs declined by 27% between 1990 and 2010, but reduction largely came to the benefit of upper-middle income countries. Achieving the WHO targets would lead to a further 55% reduction in the global burden between 2010 and 2020 in each country income group, and 81% of the global reduction would occur in low and lower-middle income countries. CONCLUSIONS: The GBD 2010 data show the burden of the nine selected NTDs in DALYs is strongly concentrated in low and lower-middle income countries, which implies that the beneficial impact of NTD control eventually also largely comes to the benefit of these same countries. While the nine NTDs became increasingly concentrated in developing countries in the 1990-2010 period, this trend would be rectified if the WHO targets were met, supporting the pro-poor designation.


Subject(s)
Cost of Illness , Neglected Diseases/epidemiology , Tropical Medicine , Humans , Income , Neglected Diseases/economics , Time Factors
11.
PLoS Negl Trop Dis ; 10(3): e0004507, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26938738

ABSTRACT

BACKGROUND: Leprosy remains a public health problem in Brazil. Although the overall number of new cases is declining, there are still areas with a high disease burden, such as Pará State in the north of the country. We aim to predict future trends in new case detection rate (NCDR) and explore the potential impact of contact tracing and chemoprophylaxis on NCDR in Pará State. METHODS: We used SIMCOLEP, an existing individual-based model for the transmission and control of M. leprae, in a population structured by households. The model was quantified to simulate the population and observed NCDR of leprosy in Pará State for the period 1990 to 2014. The baseline scenario was the current control program, consisting of multidrug therapy, passive case detection, and active case detection from 2003 onwards. Future projections of the NCDR were made until 2050 given the continuation of the current control program (i.e. baseline). We further investigated the potential impact of two scenarios for future control of leprosy: 1) discontinuation of contact tracing; and 2) continuation of current control in combination with chemoprophylaxis. Both scenarios started in 2015 and were projected until 2050. RESULTS: The modelled NCDR in Pará State after 2014 shows a continuous downward trend, reaching the official elimination target of 10 cases per 100,000 population by 2030. The cessation of systematic contact tracing would not result in a higher NCDR in the long run. Systematic contact tracing in combination with chemoprophylaxis for contacts would reduce the NCDR by 40% and bring attainment of the elimination target two years forward to 2028. CONCLUSION: The NCDR of leprosy continues to decrease in Pará State. Elimination of leprosy as a public health problem could possibly be achieved around 2030, if the current control program is maintained. Providing chemoprophylaxis would decrease the NCDR further and would bring elimination forward by two years.


Subject(s)
Communicable Disease Control/methods , Computer Simulation , Epidemiologic Methods , Leprosy/epidemiology , Leprosy/prevention & control , Adolescent , Anti-Bacterial Agents/therapeutic use , Brazil/epidemiology , Chemoprevention/methods , Child , Contact Tracing , Disease Eradication , Disease Transmission, Infectious/prevention & control , Drug Therapy, Combination/methods , Humans , Incidence , Leprosy/drug therapy , Male , Young Adult
12.
PLoS Negl Trop Dis ; 10(2): e0004386, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26890362

ABSTRACT

BACKGROUND: The London Declaration (2012) was formulated to support and focus the control and elimination of ten neglected tropical diseases (NTDs), with targets for 2020 as formulated by the WHO Roadmap. Five NTDs (lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths and trachoma) are to be controlled by preventive chemotherapy (PCT), and four (Chagas' disease, human African trypanosomiasis, leprosy and visceral leishmaniasis) by innovative and intensified disease management (IDM). Guinea worm, virtually eradicated, is not considered here. We aim to estimate the global health impact of meeting these targets in terms of averted morbidity, mortality, and disability adjusted life years (DALYs). METHODS: The Global Burden of Disease (GBD) 2010 study provides prevalence and burden estimates for all nine NTDs in 1990 and 2010, by country, age and sex, which were taken as the basis for our calculations. Estimates for other years were obtained by interpolating between 1990 (or the start-year of large-scale control efforts) and 2010, and further extrapolating until 2030, such that the 2020 targets were met. The NTD disease manifestations considered in the GBD study were analyzed as either reversible or irreversible. Health impacts were assessed by comparing the results of achieving the targets with the counterfactual, construed as the health burden had the 1990 (or 2010 if higher) situation continued unabated. PRINCIPLE FINDINGS/CONCLUSIONS: Our calculations show that meeting the targets will lead to about 600 million averted DALYs in the period 2011-2030, nearly equally distributed between PCT and IDM-NTDs, with the health gain amongst PCT-NTDs mostly (96%) due to averted disability and amongst IDM-NTDs largely (95%) from averted mortality. These health gains include about 150 million averted irreversible disease manifestations (e.g. blindness) and 5 million averted deaths. Control of soil-transmitted helminths accounts for one third of all averted DALYs. We conclude that the projected health impact of the London Declaration justifies the required efforts.


Subject(s)
Disease Eradication/methods , Neglected Diseases/prevention & control , Global Health , Humans , Neglected Diseases/epidemiology , Neglected Diseases/mortality , Quality-Adjusted Life Years , Tropical Medicine
13.
Parasit Vectors ; 8: 630, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26652272

ABSTRACT

Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020.


Subject(s)
Communicable Disease Control/methods , Disease Eradication , Disease Transmission, Infectious/prevention & control , Epidemiologic Methods , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Biostatistics , Humans , Models, Theoretical
14.
Parasit Vectors ; 8: 548, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26490878

ABSTRACT

BACKGROUND: Every year more than 200,000 new leprosy cases are registered globally. This number has been fairly stable over the past 8 years. WHO has set a target to interrupt the transmission of leprosy globally by 2020. The aim of this study is to investigate whether this target, interpreted as global elimination, is feasible given the current control strategy. We focus on the three most important endemic countries, India, Brazil and Indonesia, which together account for more than 80 % of all newly registered leprosy cases. METHODS: We used the existing individual-based model SIMCOLEP to predict future trends of leprosy incidence given the current control strategy in each country. SIMCOLEP simulates the spread of M. leprae in a population that is structured in households. Current control consists of passive and active case detection, and multidrug therapy (MDT). Predictions of leprosy incidence were made for each country as well as for one high-endemic region within each country: Chhattisgarh (India), Pará State (Brazil) and Madura (Indonesia). Data for model quantification came from: National Leprosy Elimination Program (India), SINAN database (Brazil), and Netherlands Leprosy Relief (Indonesia). RESULTS: Our projections of future leprosy incidence all show a downward trend. In 2020, the country-level leprosy incidence has decreased to 6.2, 6.1 and 3.3 per 100,000 in India, Brazil and Indonesia, respectively, meeting the elimination target of less than 10 per 100,000. However, elimination may not be achieved in time for the high-endemic regions. The leprosy incidence in 2020 is predicted to be 16.2, 21.1 and 19.3 per 100,000 in Chhattisgarh, Pará and Madura, respectively, and the target may only be achieved in another 5 to 10 years. CONCLUSIONS: Our predictions show that although country-level elimination is reached by 2020, leprosy is likely to remain a problem in the high-endemic regions (i.e. states, districts and provinces with multimillion populations), which account for most of the cases in a country.


Subject(s)
Disease Eradication , Disease Transmission, Infectious/prevention & control , Leprosy/epidemiology , Leprosy/prevention & control , Anti-Bacterial Agents/therapeutic use , Brazil/epidemiology , Drug Therapy, Combination/methods , Endemic Diseases , Incidence , India/epidemiology , Indonesia/epidemiology , Models, Theoretical , World Health Organization
15.
Adv Parasitol ; 87: 33-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25765193

ABSTRACT

Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital.


Subject(s)
Leprosy/prevention & control , Models, Theoretical , Disease Eradication , Humans , Incidence , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Leprosy/epidemiology , Leprosy/transmission , Mycobacterium leprae
16.
PLoS Negl Trop Dis ; 5(9): e1330, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21949895

ABSTRACT

BACKGROUND: Although the number of newly detected leprosy cases has decreased globally, a quarter of a million new cases are detected annually and eradication remains far away. Current options for leprosy prevention are contact tracing and BCG vaccination of infants. Future options may include chemoprophylaxis and early diagnosis of subclinical infections. This study compared the predicted trends in leprosy case detection of future intervention strategies. METHODS: Seven leprosy intervention scenarios were investigated with a microsimulation model (SIMCOLEP) to predict future leprosy trends. The baseline scenario consisted of passive case detection, multidrug therapy, contact tracing, and BCG vaccination of infants. The other six scenarios were modifications of the baseline, as follows: no contact tracing; with chemoprophylaxis; with early diagnosis of subclinical infections; replacement of the BCG vaccine with a new tuberculosis vaccine ineffective against Mycobacterium leprae ("no BCG"); no BCG with chemoprophylaxis; and no BCG with early diagnosis. FINDINGS: Without contact tracing, the model predicted an initial drop in the new case detection rate due to a delay in detecting clinical cases among contacts. Eventually, this scenario would lead to new case detection rates higher than the baseline program. Both chemoprophylaxis and early diagnosis would prevent new cases due to a reduction of the infectious period of subclinical cases by detection and cure of these cases. Also, replacing BCG would increase the new case detection rate of leprosy, but this effect could be offset with either chemoprophylaxis or early diagnosis. CONCLUSIONS: This study showed that the leprosy incidence would be reduced substantially by good BCG vaccine coverage and the combined strategies of contact tracing, early diagnosis, and treatment of infection and/or chemoprophylaxis among household contacts. To effectively interrupt the transmission of M. leprae, it is crucial to continue developing immuno- and chemoprophylaxis strategies and an effective test for diagnosing subclinical infections.


Subject(s)
Leprosy/epidemiology , Leprosy/prevention & control , Mycobacterium leprae/isolation & purification , Adult , Anti-Bacterial Agents/administration & dosage , BCG Vaccine/administration & dosage , Chemoprevention/methods , Child , Child, Preschool , Computer Simulation , Contact Tracing , Early Diagnosis , Female , Humans , Incidence , Infant , Infant, Newborn , Leprosy/diagnosis , Male
SELECTION OF CITATIONS
SEARCH DETAIL