Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34635627

ABSTRACT

L. donovani is an intracellular protozoan parasite, that causes visceral leishmaniasis (VL), and consequently, post-kala azar dermal leishmaniasis (PKDL). Diagnosis and treatment of leishmaniasis is crucial for decreasing its transmission. Various diagnostic techniques like microscopy, enzyme-linked immunosorbent assays (ELISA) and PCR-based methods are used to detect leishmaniasis infection. More recently, loop-mediated isothermal amplification (LAMP) assay has emerged as an ideal diagnostic measure for leishmaniasis, primarily due to its accuracy, speed and simplicity. However, point-of-care diagnosis is still not been tested with the LAMP assay. We have developed a portable LAMP device for the monitoring of Leishmania infection. The LAMP assay performed using our device can detect and amplify as little as 100 femtograms of L. donovani DNA. In a preliminary study, we have shown that the device can also amplify L. donovani DNA present in VL and PKDL patient samples with high sensitivity (100%), specificity (98%) and accuracy (99%), and can be used both for diagnostic and prognostic analysis. To our knowledge, this is the first report to describe the development and application of a portable LAMP device which has the potential to evolve as a point-of-care diagnostic and prognostic tool for Leishmania infections in future.


Subject(s)
Leishmaniasis/diagnosis , Leishmaniasis/parasitology , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Case-Control Studies , DNA, Protozoan/genetics , Equipment Design , Fluorescence , Humans , Leishmania donovani/genetics , Leprosy/parasitology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Parasite Load , Point-of-Care Systems , Polymerase Chain Reaction/methods , Sensitivity and Specificity
2.
Dermatol Clin ; 39(1): 83-90, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33228864

ABSTRACT

In resource-limited settings, point-of-care diagnostic devices have the potential to reduce diagnostic delays and improve epidemiologic surveillance of dermatologic conditions. We outline novel-point-of care diagnostics that have recently been developed for dermatologic conditions that primarily affect patients living in resource-limited settings, namely, Kaposi sarcoma, cutaneous leishmaniasis, leprosy, Buruli ulcer, yaws, onchocerciasis, and lymphatic filariasis. All of the technologies described in this article are prototypes, and some have undergone field testing. These devices still require validation in real-world settings and effective pricing to have a major impact on dermatologic care in resource-limited settings.


Subject(s)
Buruli Ulcer/diagnosis , Elephantiasis, Filarial/diagnosis , Leishmaniasis, Cutaneous/diagnosis , Leprosy/diagnosis , Onchocerciasis/diagnosis , Point-of-Care Testing , Sarcoma, Kaposi/diagnosis , Yaws/diagnosis , Equipment Design , Health Resources , Humans , Microbiological Techniques/instrumentation , Microbiological Techniques/methods , Microscopy, Confocal/instrumentation , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques
SELECTION OF CITATIONS
SEARCH DETAIL