Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomolecules ; 13(5)2023 04 26.
Article in English | MEDLINE | ID: mdl-37238617

ABSTRACT

The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.


Subject(s)
Multiple Myeloma , Neurodegenerative Diseases , Humans , Thalidomide/pharmacology , Thalidomide/therapeutic use , Immunomodulating Agents , Neuroinflammatory Diseases , Multiple Myeloma/drug therapy , Ubiquitin-Protein Ligases/metabolism , Neurodegenerative Diseases/drug therapy
2.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200696

ABSTRACT

Passiflora edulis by-products (PFBP) are a rich source of polyphenols, of which piceatannol has gained special attention recently. However, there are few studies involving environmentally safe methods for obtaining extracts rich in piceatannol. This work aimed to concentrate piceatannol from defatted PFBP (d-PFBP) by means of pressurized liquid extraction (PLE) and conventional extraction, using the bio-based solvents selected with the Hansen solubility parameters approach. The relative energy distance (Ra) between solvent and solute was: Benzyl Alcohol (BnOH) < Ethyl Acetate (EtOAc) < Ethanol (EtOH) < EtOH:H2O. Nonetheless, EtOH presented the best selectivity for piceatannol. Multi-cycle PLE at 110 °C was able to concentrate piceatannol 2.4 times more than conventional extraction. PLE exhibited a dependence on kinetic parameters and temperature, which could be associated with hydrogen bonding forces and the dielectric constant of the solvents. The acetylcholinesterase (AChE) and lipoxygenase (LOX) IC50 were 29.420 µg/mL and 27.682 µg/mL, respectively. The results reinforce the demand for processes to concentrate natural extracts from food by-products.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase/chemistry , Passiflora/chemistry , Plant Extracts/pharmacology , Fruit/chemistry , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/enzymology , Seeds/chemistry , Solvents/chemistry
3.
Trends Pharmacol Sci ; 40(8): 565-576, 2019 08.
Article in English | MEDLINE | ID: mdl-31326236

ABSTRACT

Computational drug repurposing has the ability to remarkably reduce drug development time and cost in an era where these factors are prohibitively high. Several examples of successful repurposed drugs exist in fields such as oncology, diabetes, leprosy, inflammatory bowel disease, among others, however computational drug repurposing in neurodegenerative disease has presented several unique challenges stemming from the lack of validation methods and difficulty in studying heterogenous diseases of aging. Here, we examine existing approaches to computational drug repurposing, including molecular, clinical, and biophysical methods, and propose data sources and methods to advance computational drug repurposing in neurodegenerative disease using Alzheimer's disease as an example.


Subject(s)
Drug Repositioning/methods , Neurodegenerative Diseases/drug therapy , Animals , Artificial Intelligence , Humans
4.
Acta Neurobiol Exp (Wars) ; 64(1): 1-9, 2004.
Article in English | MEDLINE | ID: mdl-15190675

ABSTRACT

Inflammatory processes associated with the over-production of cytokines, particularly of TNF-alpha, accompany numerous neurodegenerative diseases, such as Alzheimer's disease, in addition to numerous systemic conditions, exemplified by rheumatoid arthritis and erythema nodosum leprosum (ENL). TNF-alpha has been validated as a drug target with Remicade and Enbrel available as prescription medications. Both, however, are large macromolecules, require injection and have limited brain access. The classical drug, thalidomide is being increasingly used in the clinical management of a wide spectrum of diseases. As its clinical value in treating ENL derives from its TNF-alpha inhibitory activity, thalidomide was chosen for structural modification for the discovery of novel and more potent isosteric analogues with appropriate lipophilicity to insure high brain penetration. TNF-alpha inhibitory activity was evaluated against lipopolysacharide (LPS) stimulated peripheral blood mononuclear cells (PBMC) in cell culture, whose viability was quantified to differentiate reductions in TNF-alpha secretion from that associated with cellular toxicity. Specific analogues potently inhibited TNF-alpha secretion, compared to thalidomide. This involved a post-transcriptional mechanism, as they decreased TNF-alpha mRNA stability via its 3'-untranslated region (UTR), as determined by luciferase activity in stably transfected cells with and without the 3'-UTR of human TNF-alpha.


Subject(s)
Immunosuppressive Agents/chemistry , Neurodegenerative Diseases/drug therapy , Thalidomide/analogs & derivatives , Thalidomide/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Cells, Cultured , Humans
5.
Acta Neuropathol ; 108(1): 65-8, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15138778

ABSTRACT

Rifampicin is an antibacterial drug which is highly effective in the treatment of tuberculosis and leprosy. It has been shown to exert antioxidative as well as anti-apoptotic effects. In this study, the neuroprotective effect of rifampicin was examined after 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic cell death in vitro, and on the survival of retinal ganglion cells after optic nerve transection in vivo. Rifampicin administration significantly increased the number of surviving dopaminergic neurons after MPP+ intoxication as compared to control cultures. No cytotoxic effects were noted even at final rifampicin concentrations of 100 microM. In the rifampicin-treated group, retinal ganglion cell survival was significantly increased after axotomy as compared with vehicle-treated and phosphate-buffered saline-treated control animals. These results suggest that rifampicin is able to prevent neuronal degeneration in cell death paradigms involving oxidative stress and activation of apoptotic pathways. It may thus play a role in the future treatments of neurodegenerative disorders.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Enzyme Inhibitors/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Optic Nerve Injuries/drug therapy , Rifampin/therapeutic use , Animals , Cell Count/methods , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Interactions , Embryo, Mammalian , Immunohistochemistry/methods , In Vitro Techniques , Male , Mesencephalon/cytology , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/etiology , Optic Nerve Injuries/complications , Rats , Rats, Wistar , Retinal Ganglion Cells/drug effects , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL