Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
mSphere ; 6(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952660

RESUMEN

Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.


Asunto(s)
Citosol/microbiología , Mycobacterium/inmunología , Mycobacterium/patogenicidad , Fagosomas/microbiología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Animales , Armadillos/microbiología , Traslocación Bacteriana , Citosol/inmunología , Femenino , Humanos , Lepra/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Mycobacterium/clasificación , Fagosomas/inmunología , Piel/microbiología , Piel/patología , Células THP-1 , Pez Cebra
2.
Science ; 354(6313): 702-703, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27846589

Asunto(s)
Lepra , Sciuridae , Animales
3.
Microbiol Spectr ; 2(1): MGM2-0025-2013, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26082120

RESUMEN

Most mycobacterial species are harmless saprophytes, often found in aquatic environments. A few species seem to have evolved from this pool of environmental mycobacteria into major human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis, Mycobacterium leprae, the leprosy bacillus, and Mycobacterium ulcerans, the agent of Buruli ulcer. While the pathogenicity of M. ulcerans relates to the acquisition of a large plasmid encoding a polyketide-derived toxin, the molecular mechanisms by which M. leprae or M. tuberculosis have evolved to cause disease are complex and involve the interaction between the pathogen and the host. Here we focus on M. tuberculosis and closely related mycobacteria and discuss insights gained from recent genomic and functional studies. Comparison of M. tuberculosis genome data with sequences from nontuberculous mycobacteria, such as Mycobacterium marinum or Mycobacterium kansasii, provides a perception of the more distant evolution of M. tuberculosis, while the recently accomplished genome sequences of multiple tubercle bacilli with smooth colony morphology, named Mycobacterium canettii, have allowed the ancestral gene pool of tubercle bacilli to be estimated. The resulting findings are instrumental for our understanding of the pathogenomic evolution of tuberculosis-causing mycobacteria. Comparison of virulent and attenuated members of the M. tuberculosis complex has further contributed to identification of a specific secretion pathway, named ESX or Type VII secretion. The molecular machines involved are key elements for mycobacterial pathogenicity, strongly influencing the ability of M. tuberculosis to cope with the immune defense mounted by the host.


Asunto(s)
Genoma Bacteriano , Mycobacterium/genética , Mycobacterium/patogenicidad , Tuberculosis/microbiología , Factores de Virulencia/genética , Biología Computacional , Evolución Molecular , Humanos
4.
Cell Microbiol ; 14(8): 1287-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22524898

RESUMEN

Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence.


Asunto(s)
Citoplasma/microbiología , Mycobacterium/patogenicidad , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular , Técnicas de Sustitución del Gen , Interacciones Huésped-Patógeno , Humanos , Lisosomas/microbiología , Lisosomas/ultraestructura , Mycobacterium/genética , Mycobacterium/metabolismo , Fagosomas/microbiología , Fagosomas/ultraestructura , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Microbiology (Reading) ; 150(Pt 2): 483-496, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14766927

RESUMEN

To better understand the biology and the virulence determinants of the two major mycobacterial human pathogens Mycobacterium tuberculosis and Mycobacterium leprae, their genome sequences have been determined recently. In silico comparisons revealed that among the 1439 genes common to both M. tuberculosis and M. leprae, 219 genes code for proteins that show no similarity with proteins from other organisms. Therefore, the latter 'core' genes could be specific for mycobacteria or even for the intracellular mycobacterial pathogens. To obtain more information as to whether these genes really were mycobacteria-specific, they were included in a focused macro-array, which also contained genes from previously defined regions of difference (RD) known to be absent from Mycobacterium bovis BCG relative to M. tuberculosis. Hybridization of DNA from 40 strains of the M. tuberculosis complex and in silico comparison of these genes with the near-complete genome sequences from Mycobacterium avium, Mycobacterium marinum and Mycobacterium smegmatis were undertaken to answer this question. The results showed that among the 219 conserved genes, very few were not present in all the strains tested. Some of these missing genes code for proteins of the ESAT-6 family, a group of highly immunogenic small proteins whose presence and number is variable among the genomically highly conserved members of the M. tuberculosis complex. Indeed, the results suggest that, with few exceptions, the 'core' genes conserved among M. tuberculosis H37Rv and M. leprae are also highly conserved among other mycobacterial strains, which makes them interesting potential targets for developing new specific anti-mycobacterial drugs. In contrast, the genes from RD regions showed great variability among certain members of the M. tuberculosis complex, and some new specific deletions in Mycobacterium canettii, Mycobacterium microti and seal isolates were identified and further characterized during this study. Together with the distribution of a particular 6 or 7 bp micro-deletion in the gene encoding the polyketide synthase pks15/1, these results confirm and further extend the revised phylogenetic model for the M. tuberculosis complex recently presented.


Asunto(s)
Antígenos Bacterianos/genética , Variación Genética , Familia de Multigenes , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Proteínas Bacterianas , Secuencia de Bases , Biología Computacional , Técnicas de Sonda Molecular , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Mapeo Restrictivo , Eliminación de Secuencia
6.
Trans R Soc Trop Med Hyg ; 96(1): 1-6, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11925980

RESUMEN

The small size of their genomes made bacterial ideal model organisms for the emerging field of genomics. Elucidating the genome sequences of mycobacteria was particularly attractive owing to the difficulties inherent in their manipulation. The slow growth rate, clumping, and requirement for category III containment make manipulation of Mycobacterium tuberculosis-complex strains laborious. M. leprae presents even greater problems as it has resisted all attempts at axenic culture. Availability of genome sequence data promised to accelerate our knowledge of the fundamental biology of these organisms, and to offer clues to the basis for their virulence, tropism and persistence in the host. This article will focus on what the genome sequences of M. tuberculosis and M. leprae have taught us about these pathogens, and how comparative genomics has exposed some of the fundamental differences between the species.


Asunto(s)
Genoma Bacteriano , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Humanos , Mycobacterium leprae/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA