Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21508, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439512

RESUMEN

Abstract Ellagic acid (EA) is a phenolic biomolecule. For its biosynthesis, a source of ellagitannins is required, such as strawberries and yeasts, as precursors of the tannase and ß-glucosidase enzymes responsible for hydrolysis of ellagitannins. Two experimental mixture designs were applied., varying the yeast concentration and the number of ellagitannins in the culture medium, evaluating the enzymatic activity and ellagic acid biosynthesis. Aiming to find the optimal compositions of the non-conventional yeasts assessed in the research to biosynthesize ellagic acid feasibly and efficiently using a response surface performing the statistical analysis in the StatGraphics® program for obtaining a higher yield and optimizing the ellagic acid synthesis process, the results indicate that the strains Candida parapsilosis ITM LB33 and Debaryomyces hansenii ISA 1510 have a positive effect on the synthesis of ellagic acid, since as its concentration increases in the mixture the concentration of ellagic acid in the medium also increases; on the other hand, the addition of Candida utilis ITM LB02 causes a negative effect, resulting in the compositions of 0.516876, 0.483124 and 2.58687E-9 respectively, for a treatment under the same conditions, an optimal value of ellagic acid production would be obtained. With an approximate value of 7.33036 mg/mL


Asunto(s)
Levaduras/clasificación , Reactores Biológicos/clasificación , Ácido Elágico/síntesis química , Optimización de Procesos , Debaryomyces/clasificación , Candida parapsilosis/clasificación
2.
Biochim Biophys Acta Gen Subj ; 1866(8): 130154, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35461922

RESUMEN

Six different yeasts were used to study their metabolism of glucose and xylose, and mainly their capacity to produce ethanol and xylitol. The strains used were Candida guilliermondii, Debaryomyces hansenii, Saccharomyces cerevisiae, Kluyveromyces marxianus, Meyerozyma guilliermondii and Clavispora lusitaniae, four isolated from a rural mezcal fermentation facility. All of them produced ethanol when the substrate was glucose. When incubated in a medium containing xylose instead of glucose, only K. marxianus and M. guilliermondii were able to produce ethanol from xylose. On the other hand, all of them could produce some xylitol from xylose, but the most active in this regard were K. marxianus, M. guilliermondii, C. lusitaniae, and C. guilliermondii with the highest amount of xylitol produced. The capacity of all strains to take up glucose and xylose was also studied. Xylose, in different degrees, produced a redox imbalance in all yeasts. Respiration capacity was also studied with glucose or xylose, where C. guilliermondii, D. hansenii, K. marxianus and M. guilliermondii showed higher cyanide resistant respiration when grown in xylose. Neither xylose transport nor xylitol production were enhanced by an acidic environment (pH 4), which can be interpreted as the absence of a proton/sugar symporter mechanism for xylose transport, except for C. lusitaniae. The effects produced by xylose and their magnitude depend on the background of the studied yeast and the conditions in which these are studied.


Asunto(s)
Xilitol , Xilosa , Etanol/metabolismo , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Xilitol/metabolismo , Xilosa/metabolismo
3.
Microbiology (Reading) ; 153(Pt 9): 3034-3043, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17768246

RESUMEN

Two genes from the halotolerant yeast Debaryomyces hansenii were cloned, DhTRK1 and DhHAK1. These genes encode K(+) transporters with sequence similarities to the TRK and HAK transporters from Debaryomyces occidentalis and Candida albicans. The DhHAK1p transporter was only expressed in K(+)-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a trk1Delta trk2Delta mutant of Saccharomyces cerevisiae, unable to grow at low K(+). This expression resulted in partial recovery of growth and ability to retain K(+) at low concentrations. In liquid media, 0.5 M NaCl affected growth of these S. cerevisiae transformants as it does in D. hansenii, resulting in a much less deleterious effect than in wild-type S. cerevisiae. Kinetics of Rb(+) uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K(+) transporters exhibiting a sigmoid response against Rb(+) concentration and presenting a deviation from classic Michaelis-Menten kinetics at low substrate concentrations. Rb(+) uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na(+) at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of D. hansenii.


Asunto(s)
Proteínas de Transporte de Catión , Clonación Molecular , Regulación Fúngica de la Expresión Génica , Potasio/metabolismo , Saccharomycetales/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Rubidio/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/genética , Saccharomycetales/crecimiento & desarrollo , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología
4.
Rev Latinoam Microbiol ; 44(3-4): 137-56, 2002.
Artículo en Español | MEDLINE | ID: mdl-17061488

RESUMEN

The term halophile is used for all those organisms belonging to hypersaline habitats; they constitute an interesting class of organisms able to compete successfully in salt water and to resist its denaturing effects. A wide diversity of microorganisms, prokaryotic and eukaryotic belong to this category. Halophile organisms have strategies allowing them not only to withstand osmotic stress, but also to function better in the presence of salt, in spite of maintaining high intracellular concentrations of salt, partly due to the synthesis of compatible solutes that allow them to balance their osmotic pressure. We describe the characteristics of some halophile organisms and D. hansenii (halophile yeast), that allow them to resist high concentrations of salt. The interest to know the great diversity microorganisms living in hypersaline habitats is growing, and has begun to be the center of recent investigations, since halophile organisms produce an wide variety of biomolecules that can be used for different applications. In this review we describe some mechanisms with which some halophile organisms count to resist the high concentration of salts, mainly NaCl.


Asunto(s)
Adaptación Fisiológica , Halobacteriales/fisiología , Saccharomycetales/fisiología , Animales , Proteínas Bacterianas/fisiología , Biotecnología/métodos , Chlorophyta/fisiología , Metabolismo Energético , Activación Enzimática , Células Eucariotas/efectos de los fármacos , Células Eucariotas/fisiología , Proteínas Fúngicas/fisiología , Regulación Bacteriana de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Halobacteriales/efectos de los fármacos , Líquido Intracelular/química , Lípidos de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Concentración Osmolar , Presión Osmótica , Fenómenos Fisiológicos de las Plantas , Saccharomycetales/efectos de los fármacos , Solución Salina Hipertónica/farmacología , Solubilidad , Alcoholes del Azúcar/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA