Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros


Bases de datos
Año de publicación
Tipo del documento
Intervalo de año de publicación
1.
J Infect ; 86(4): 338-351, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36796681

RESUMEN

OBJECTIVE: The World Health Organization (WHO) recommends multidrug therapy (MDT) with rifampicin, dapsone, and clofazimine for treating leprosy, which is based on very low-quality evidence. Here, we performed a network meta-analysis (NMA) to produce quantitative evidence to strengthen current WHO recommendations. METHOD: All studies were obtained from Embase and PubMed from the date of establishment to October 9, 2021. Data were synthesized with frequentist random-effects network meta-analyses. Outcomes were assessed using odds ratios (ORs), 95% confidence intervals (95% CIs), and P score. RESULTS: Sixty controlled clinical trials and 9256 patients were included. MDT was effective (range of OR: 1.06-1255584.25) for treating leprosy and multibacillary leprosy. Six treatments (Range of OR: 1.199-4.50) were more effective than MDT. Clofazimine (P score=0.9141) and dapsone+rifampicin (P score=0.8785) were effective for treating type 2 leprosy reaction. There were no significant differences in the safety of any of the tested drug regimens. CONCLUSIONS: The WHO MDT is effective for treating leprosy and multibacillary leprosy, but it may not be effective enough. Pefloxacin and ofloxacin may be good adjunct drugs for increasing MDT efficacy. Clofazimine and dapsone+rifampicin can be used in the treatment of a type 2 leprosy reaction. Single-drug regimens are not efficient enough to treat leprosy, multibacillary leprosy, or a type 2 leprosy reaction. AVAILABILITY OF DATA AND MATERIALS: All data generated or analyzed during this study are included in this published article [and its supplementary information files].


Asunto(s)
Lepra Multibacilar , Lepra , Humanos , Leprostáticos/efectos adversos , Rifampin/efectos adversos , Clofazimina/efectos adversos , Metaanálisis en Red , Quimioterapia Combinada , Lepra/tratamiento farmacológico , Dapsona/efectos adversos , Lepra Multibacilar/tratamiento farmacológico
2.
Infect Drug Resist ; 15: 1067-1076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313727

RESUMEN

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) infection, which has seriously endangered human health for many years. With the emergence of multidrug-resistant and extensively drug-resistant MTB, the prevention and treatment of TB has become a pressing need. Early diagnosis, drug resistance monitoring, and control of disease transmission are critical aspects in the prevention and treatment of TB. However, the currently available diagnostic technologies and drug sensitivity tests are time consuming, and thus, it is difficult to achieve the goal of early diagnosis and detection drug sensitivity, which results in limited control of disease transmission. The development of molecular testing technology has gradually achieved the vision of rapid and accurate diagnosis of TB. Droplet digital PCR (ddPCR) is an excellent nucleic acid quantification method with high sensitivity and no need for a calibration curve. Herein, we review the application of ddPCR in TB diagnosis and drug resistance detection and transmission monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA